
MACHINE LEARNING & ARTIFICIAL INTELLIGENCE FOR ROBOTICS - HOMEWORK 0

Particle Filtering for 2D Localisation

October 14th, 2019

Maurice Rahme



1 Part A

1.1 Designing the Motion Model

The subject being tracked by this particle filter is a mobile robot moving on a 2D plane. Access is not given
to this robot’s low-level controls (i.e differential drive actuation), so it is reasonable to assume a unicycle
model whereby motion can be achieved by a combination of linear and angular velocity, thus mapping the
robot as a 3 degree of freedom system represented by coordinates x, y, and θ. Hence, the nonlinear motion
model used for this filter is the following for each iteration of time elapsed dt:

1. If w is zero:
xt = xt−1 + v ∗ cos(θt−1) ∗ dt+ εx (1.1)

yt+ = yt−1 + v ∗ sin(θt−1) ∗ dt+ εy (1.2)

2. If w is nonzero, we represent motion as a circular trajectory:

xt+ = xt−1 +
v

w
∗ (−sin(θt−1) + sin(θt−1 + w ∗ dt)) + εx (1.3)

yt+ = yt−1 +
v

w
∗ (cos(θt−1)− cos(θt−1 + w ∗ dt)) + εy (1.4)

θt = θt−1 + w ∗ dt+ εθ (1.5)

where v is linear velocity, ω is angular velocity, and ε is noise.

The model is nonlinear due to the sin and cos relationship between the robot coordinates and velocity [1].

1.2 Testing the Motion Model

In this basic test, the motion model updates the robot’s state using the given commands. The resultant state is
appended to a Path list which is used to plot the resultant trajectory in figure 1. This plot does not showcase
the motion model’s nonlinearity due to the decoupling of linear and angular velocity commands.

(a) Trajectory without Noise. (b) Trajectory with Noise.

Figure 1: Testing the Motion Model.

1



1.3 Testing the Simulated Controller on the Robot Dataset

Here, the controls of the Odometry file in Data Set 1 were used to actuate the robot and plot its motion
according to localisation by dead-reckoning. The data set does not provide values for dt, but it is easily
extracted from the actuation time stamps, where dt = tnext − tcurrent. To better understand the localisation
results, these were plotted against the values from the Ground Truth file provided by a camera in the robot’s
workspace in figure 2.

Figure 2: Dead Reckoning Pose Estimation VS Ground Truth Data, Full Set.

It is clear from this plot that the dead reckoning path diverges significantly from the ground truth path. To
better identify this divergence, a plot limited at 2000 iterations can be printed, as shown in figure 3.

Figure 3: Dead Reckoning Pose Estimation VS Ground Truth Data, 2000 Iterations.

2



Examining the limited plot shows that the main source of discrepancy and error arises from the issuance of
ω commands, as the dead reckoning data follows ground truth well during purely transnational motion, even
recovering an initial offset due to a combination of rotational and transnational actuation done earlier.

1.4 Designing The Particle Filter

The Particle Filter is a nonparametric implementation of a Bayes filter, meaning that it computes the pos-
terior bel(xt) of each state without needing to fit its data to a normal distribution. Instead, random state
samples (particles) approximate this distibution. This filter is robust to occlusion, nonlinear dynamics, non-
Gaussian noise, and most notably, it can represent multimodal posteriors, although this aspect of the filter is
not needed here [2]. The filter algorithm is summarised in the following steps:

1. Generate Initial Particle Set according to the likelihood for a hypothesis to be included in set χt,
which is proportional to posterior bel(xt): x

[m]
t = p(xt|z1:t, u1:t), where z and u are measurements

and controls respectively [2].

(a) Knowing the robot’s initial condition, generate M particles normally distributed around said
position, setting the weight of each particle to 1

M .

(b) A tunable parameter here is the standard deviation in the coordinates of the generated particles.

2. Propagate each particle forward using the motion model described in section 1.1.

(a) A tunable parameter here is control noise ε for w and v.

3. Perform weight update if measurement is recorded.

(a) If a landmark measurement is recorded at any time interval between the current time stamp
and the next (indicating that a measurement has occurred during the control step), calculate
the expected range and bearing for each particle using equations 1.8 and 1.9. The smaller the
difference between the recorded and predicted measurements for a given particle, the better that
particle acts as a representation of true state. Hence, the weight assigned is the average of pirange
and pibearing is described by equation 1.6 where r/b denotes the range or bearing estimated by
the particle position, µr/b is the actual measure range or bearing, and σ2 is the variance of the
previous set, initialised to 1. If multiple measurements occur at a given time frame, average the
weights assigned by each of them before normalising [2].

p(r/b, µr/b) =
1√
2πσ2

exp−
(r/b− µr/b)2

2σ2
(1.6)

(b) Normalise the weights of all particles by dividing each by the sum of all the weights so that they
add up to 1. Note that in every iteration, the final weight is found by multiplying the weight of a
given particle at the previous iteration with the its weight generated in this step [2].

4. Calculate wvar, the variance of the set’s weights. A value tending to zero indicates that that all
weights are converging to the same value, discouraging the use of a resampling step. Conversely, a
high variance encourages resampling to redistribute the weights among weaker particles.

3



wvar is given by:

wvar =

∑
(wit − wµ))2

M − 1
(1.7)

5. If wvar is above 4E − 10, resample using Low-Variance resampling, which discards low-weight
particles and replaces them with randomly generated ones.

(a) Through a sequential stochastic process, the algorithm chooses a random number r, then - to
build the new set - selects particles according to the weight-space division of u = r+(m− 1) ∗
M−1 as shown in figure 4 [2].

Figure 4: Low-Variance Resampling Weight-Space Division [2].

(b) Within each division, the particle of index i selected is the one that corresponds to c < u, where
c = c + wit. Until this is true, i is incremented to evaluate the weight of the next particle in
the division. Once the division is broken by c < u, the particle is added to the set and the next
division is examined [2].

6. If wvar is below 0.2E − 10 in the resampling step, generate 0.1 ∗M particles normally distributed
around the prior to restore variance to the set. The values for wvar and the number of randomly
generated particles was determined experimentally.

7. Extract the posterior from the sample set by computing a weighted average of x, y, and θ separately
using the particle weights. The variance is extracted here for the next iteration using equation 1.7.

8. Repeat steps 2 through 7 for the entirety of the robot’s motion.

A key design consideration is the number of particles, M . The particle filter is designed with a theoretical
infinite sample set χt. The closer M tends to one, the less the measurement probability contributes to the
weighing of particles due to an introduction of systematic bias to the posterior. This is evident in the extreme
case of M = 1 where the single particle will always be taken as the posterior irrespective of its weight.
However, increasing M increases computational power, so an intermediate value of 1000 was chosen to
compromise between speed and performance. Increasing M also increases variance [2].

Another important factor is sample variance. This is especially true for Data Set 0, where the first measure-
ment occurs only after 382 motion iterations, by which time the particles can easily converge to a single
point due to the lack of measurements. This is the reason for which wvar is used to determine resampling,
as well as the introduction of new random particles to the set as described in the algorithm [2].

4



1.5 Specifying the Measurement Model

The measurement model maps the range and bearing - as measured by the robot at various timestamps - to
the cartersian position of the measured object (the landmark) relative to the robot, and vice versa. Notably,
for the particle filter, given a landmark - whose cartesian position is known - the measurement model is
used to compute the expected range and bearing of each particle in the active set. These expected readings
are then compared to the actual reported sample, and are then used to assign a weight to each particle as
described in section 1.4.

The model for expected range and bearing given known landmark and particle coordinates is given as follows
[3]:

range =
√

(xt − xi− εxi)2 + (yt − yi− εyi)2 (1.8)

bearing = arctan(
yi + εyi − yt
xi + εxi − xt

) (1.9)

Where xt, yt denote the robot’s cartesian coordinates, xi, yi denote the landmark’s cartesian coordinates,
εxi,yi is standard deviation of each landmark as reported by the Vicon camera, and εxt,yt is the robot’s
sensor noise, which was arbitrarily selected as 0.0001 as it is assumed to be worse than the Vicon camera,
and no steady samples were provided to analytically compute noise.

1.6 Testing the Measurement Model

A simple test was conducted to assess the validity of the measurement model, whereby equations 1.8 and 1.9
were used to compute range and bearing respectively for known robot and landmark positions. These values
were then fed into the complement of the measurement model, which computes the landmark position based
on the robot’s coordinates and the range and bearing computed by equations 1.8 and 1.9. The complement
of the measurement model is described below:

xi = xt + range(cos(bearing + heading)) (1.10)

yi = yt + range(sin(bearing + heading)) (1.11)

Where heading is simply the robot’s orientation relative to the domain’s x axis. Below are the results from
running the test with and without measurement noise:

5



(a) Test without Noise. (b) Test with Noise.

Figure 5: Testing the Measurement Model.

2 Part B

2.1 Assessing Filter Performance

2.1.1 Performance in the Basic Motion Test

If noise is added to the motion model for the commands in step 2, it deviates slightly from the expected
trajectory. Conversely, as seen in figure 6, the particle filter traces a close trajectory even with the absence
of measurements. However, this is not true for every instance, as it is sometimes less accurate than the dead
reckoning path depending on the inherent randomness introduced by the particle set, which is not corrected
by measurements in this case.

Figure 6: Particle Filter Trajectory for Exercise 2 Commands (With Noise).

6



2.1.2 Performance in the Odometry Data Test

Compared to dead reckoning, as shown in figure 7, the particle filter follows the ground truth path well.
Note that the dead reckoning path behaved well in cases of near-total or total linear motion, but deviated
significantly with the introduction of angular motion. Hence, in the initial particle distribution, the standard
deviation for the x and y coordinates of the particles was kept low at 0.0002, but that of θ was kept com-
paratively higher at 1.5 so that particles would be able to explore a larger sample space of θ possibilities, as
this was the main source of error. Although some tuning can be done to more narrowly follow the path, the
chosen parameters were successful.

Figure 7: Particle Filter VS Ground Truth Path.

Noting that the weight update is performed using a measurement, clear attempts to correct at these time
stamps can be identified by the jagged nature of the particle filter path in figure , post-correction. This
means that an increase in measurement frequency could result in a smoother and more accurate path.

2.2 Uncertainty in the Algorithm

The filter produced here is effective, but could use some further tuning. There are many parameters to
optimise, including motion model noise, sensor noise, the wvar threshold for resampling, the standard devi-
ation of the initial normally distributed sample set, and the sample set size. With this variety of optimisation
routes, it was difficult to identify a clear design procedure. However, certain elements showed more promise,
notably the standard deviation of θt around the prior in both the initially generated set and the random sample

7



replacements in the resampling stage. A higher comparative value of 1.5 to 2, depending on other parame-
ters, showed better performance as it geared the particle filter to evaluate particles mainly using their bearing
measurement, hence correcting the rotational motion deviation mentioned in section 1.3. Below are plots
for θ of 1.5 and 2 respectively.

(a) Path before measurement (b) Path after measurement

Figure 8: Pre and post measurement path.

Notably, here, it is evident that the prior belief loses confidence prior to the measurement as shown by a
larger particle spread. This is promptly corrected once the measurement is taken, abruptly correcting the
path and narrowing the particles.

Another important variable was found to be wvar, as this determined the resampling frequency. The cho-
sen minimum of 4E − 10 for resampling and maximum of 2E − 10 for introducing radom particles into
the resampling were chosen experimentally, but could be further optimised by examining the outcome of
resampling and particle introduction frequency over various portions of the control set. In tandem, the num-
ber of random particles to be generated in the special resampling step is another tunable parameter with a
significant effect on performance.

8



Ultimately, the filter performed well and as expected. It does follow the path well, but could use some
further tuning for smaller error. Notably, the filter was crucial during rotational velocity commands, but less
so for purely linear motion. Arguably, it could be said that the filter hinders upon dead reckoning estiation
for linear motion as it struggles the estimate a straight-line path when that is clearly what the ground truth
is doing. This qualitative observation could be implemented in the algorithm such that the filter estimate is
only considered during nonlinear

Notably, this trajectory is much smoother than those in figures 8 and 9. However, it is evidently a worse
performer, highlighting the importance of the measurement update and the destabilising effect caused by its
absence in the beginning of the control sequence. The later measurements are implemented, the longer the
filter will take to recover. This is especially true if measurements are scarce.

Finally, note that the motion model used in section 1.1 is a unicycle model, and may not represent the
detailed motion of the robot. This may also have an effect on performance, although it is recognised that the
particle filter is robust against this issue. The frequency of measurements also plays an important role in the
estimate, but those in the provided dataset were sufficient for producing a good path.

3 Citations

[1] “Robot Motion.” Probabilistic Robotics, by Sebastian Thrun et al., MIT Press, 2010.

[2] “The Particle Filter.” Probabilistic Robotics, by Sebastian Thrun et al., MIT Press, 2010.

[3] Russel, Stuart Norvig Peter. Artificial Intelligence: a Modern Approach. PEARSON, 2018.

9


