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1 Introduction

Magnetic levitation is a rapidly developing field of engineering, with vast engineering application
found across many industries such as transportation, high precision motors and energy storage.
The benefits of the technology arise from its no contact operations leading to very low losses and
minimal maintenance (Schweitzer and Maslen, 2009). Additionally, magnetic bearings can be
used in vacuums where conventional bearings can not be used as the lubricant would evaporate.

Actively controlled levitation is a crucial component in high speed transportation. Tolerances
in the wheels and the track no longer become an issue in these applications; it is currently
used in the SCMaglev railway system in Japan and is an essential component to the rapidly
developing field of Hyperloop technology. Audio company Bose also displayed a prototype car
using magnetic suspension which used actively controlled magnetic levitation to stabilise the
vehicle and was shown to be far superior to industry standard shocks.

Furthermore, the low friction properties are being exploited for energy storage by companies
such as NASA and Teraloop where high speed flywheel technology is being used to balance
demand from the power grid. They apply energy to the flywheel when demand is low and
then the inertial energy is converted back to electricity when demand is high - working as an
exceptional companion to solar and wind energy.

This paper focuses on the stable levitation of a steel ball to explore the principles of magnetic
levitation and the control theory that underlies the technology. After a model was developed and
a test rig was made to balance the ball in place at a set height, a more complex two dimensional
model was then made to actively control the height of the ball as well as its longitudinal travel.

Tuning such systems is not simple, thus a machine learning approach was adopted to find suit-
able PID values for stable operation. A genetic algorithm was used which produced increasingly
suitable PID values as it was left to run over time. The algorithm provided a quicker, easier
and more accurate solution compared to manual tuning.

2 Literature Review

2.1 Theoretical Implementations of Magnetic Levitation of Ball Bearings

There is an abundance of papers suggesting methods of deriving transfer functions for magnetic
levitation of spheres. However, they often do not solve the nonlinear and unstable properties
of the system perfectly. Indeed, finding past research material on feasible control of steel ball
levitation proved difficult. For example, Sorour (2015) introduced the method of deriving the
transfer functions and linearising the system using Taylor Series. He also designed a lead-lag
compensator and tuned the system via the root locus method. However, there were some
errors in their derivation and implementation. At the same time, Hlebowitsh focused on the
development of control methods for 2D and 3D systems. He suggested several innovative ideas
for linearising the system, but some of his assumptions might not be reasonable and his control
system does not satisfy the design requirements. In addition, some research (Kumar and Minz,
2016; Gazdos, Dostal and Marholt, 2011) showed good results, but they were brief in derivation
process and tuning method. At the same time, some research (Hajjaji and Ouladsine, 2001)
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achieved acceptable results in a detailed way, but it was too difficult to repeat such a complex
process in a short period of time. In summary, after reviewing previous research outputs,
complete and proper theory for this project was not found which meant a pioneering theory to
solve this problem needed to be developed by ourselves. The literature review also suggested
that traditional tuning methods such as Ziegler-Nichols would be ineffective for a system of this
non-linearity and instability. Duriez et al. (2017) and Amaral et al. (2005) suggested that
genetic algorithms would be the optimal way of tuning PID controllers under these conditions
which served as a starting point for exploration.

2.2 Practical Implementation of the System

Technical specifications of such a system proved difficult to find, partially because the majority
of academic papers focused on the transfer function and theoretical behaviour of the system
and because the papers that did talk about the system used equipment far outside of the price
ranges available to us. Therefore the literature review focuses heavily on exploring datasheets
for various sensors (explored in sections 8.3.1 through 8.3.4)

3 Project Management

At the start of the project, there was apparent value in assigning a project manager to the
group because of the scope of the project. The project manager was responsible for creating a
detailed project plan, taking minutes at meetings, distributing the roles and tasks to the group
members, and ensuring that the group stayed on track to complete the project on time.

The project plan was composed of a Gantt chart which detailed every major task to be completed
and was presented in a comprehensible visual format. It is clear from the chart that there were
many important tasks to complete and the project manager put an emphasis on meeting strict
time management deadlines. This was deemed to be of great importance in a project with such
challenging goals but limited by the amount of time with which to achieve them.

The major task areas were assigned based on previous experience of the members of the group
and interest of individuals to work on a specific area of interest to them. These major areas
were magnetic simulation and 1D/2D transfer function derivation (Yidan Xue), 1D/2D control
system design and VR simulation of the system (Maurice Rahme), designing and building
the physical system (Daniel Carbonell), sensor and control research and implementation (Emil
Hansen), software and controller design, implementation and tuning (Emil Hansen and Max
Benson).

After the interim presentation and having discussed the feedback given, the project manager
decided with the group to re-evaluate the goals and the feasibility of achieving them within the
tight budget and timescale. Having discussed this it was decided to continue working towards
the initial goals. However, the goals for 2D simulation were adjusted. Instead of controlling the
steel ball between any two points - as has never been achieved before using only an electromagnet
- it was decided to approximate this to small movements from a target point. However, the
long movement and 3D movement could still be achieved by this way, if several electromagnets
were laid out in a grid (Hlebowitsh, 2012).
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4 Magnetic Simulation

Due to the complexity of the physical system, a magnetic simulation was implemented to find an
accurate relationship between the magnetic force on the steel ball and its displacement. Finite
Element Method (FEM) is often used when solving magnetic problems. It divides the domain
into a large number of small sub-domains, repeatedly solving Maxwell’s Equations inside each
small block and achieves solutions for the whole domain. Currently, there are several magnetic
simulation software packages using this technique and they can be used for the problem laid
out above.

4.1 Software Selection and Simulation Process

Finite Element Method Magnetics (FEMM), ANSYS AIM and ANSYS Maxwell were compared
before beginning simulations. Maxwell is one of the most used professional magnetic simulation
software packages developed by ANSYS (2018a). However, it was not used because of its
complexity and steep learning curve. Hence simulations were completed using FEMM and
ANSYS AIM to choose the better one for this simulation.

FEMM (2014) is a 2D magnetic simulation software, but it can solve 3D axisymmetric cylindrical
coordinate problems. The solenoid and ball were modelled in an axisymmetric coordinate system
and meshed in the the sphere domain as Figure 1 (a) shows. After solving the magnetic field
inside the domain shown in Figure 1 (b), the force on the steel ball could be integrated. Then,
the ball was moved along the y axis. At different positions, the current inside the coil could be
adjusted by changing the current flux density (4.1) to find the current which could balance the
ball. This was done as FEMM does not natively support alterations in current.

J =
4I

πD2
(4.1)

(a) Mesh (b) Solution

Figure 1: 2D Magnetic Simulation by FEMM

However, a huge difference was found between the FEMM results and the experimental data.
The coarse mesh generated by FEMM was one possible reason for this error, especially the mesh
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generated inside the ball. From the calculation procedure document, it was found that only
5004 nodes and 9629 elements were created. It didn’t seem enough to be able to describe the
complicated magnetic field. Another reason might be the integration process from 2D Cartesian
coordinates to 3D cylindrical coordinates could not reflect the 3D physical system accurately.
Hence this method was not chosen in the end.

ANSYS AIM (2018) is another 3D magnetic simulation software developed by ANSYS and
uses a similar solver to Maxwell. It can solve static magnetic field problems in 3D and is free
for academic use. After getting the 19.2 Academic version from ANSYS, the 3D geometry of
solenoid and steel ball was created based on the physical design and generated a computing
domain around them. The geometry then was transported to the physical solver. When setting
up the solver, proper materials were assigned to parts and the current was generated inside
the coils. Then, a finer mesh option and more accurate solution option were selected. Finally,
the solution could be calculated as Figure 2 shows. This process was repeated by changing the
current until the magnetic force on the steel ball could be balanced by its gravitational force.

Figure 2: 3D Simulation Results in ANSYS AIM

Next, the position of the steel ball was changed in the geometry and the process was repeated to
obtain the current required to balance the ball at different positions along the vertical axis. The
results were listed in Table 1 and plotted in MATLAB as shown in Figure 3. These solutions
matched with the experimental data and were used for deriving the transfer function.
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Table 1: 3D simulation results data

Displacement(m) Current(A)

0.05 46
0.045 37
0.04 28
0.035 20.5
0.03 14.5
0.025 9.5
0.02 6.0
0.015 3.3
0.01 1.05

Figure 3: Current required to balance the gravity force at different positions

4.2 Simulation Results Analysis

A quadratic curve was fitted to the simulated testing points as shown in Figure 3, suggesting a
relationship between current and displacement described by equation 4.2.

I = k(x+ x0)
2 (4.2)

Where k is a constant based on the physical system and x0 is the offset. Hajjaji and Ouladsine
(2001) achieved similar experimental results that show the square of current was proportional
to the displacement in the region near the solenoid. At the same time, there are lots of papers
assuming the current is proportional to the displacement when deriving their transfer functions
(Gazdos, Dostal and Marholt, 2011; Kumar E and Jerome, 2013). However, those assumptions
do not seem to be reasonable due to the nonlinear properties of the magnetic field (Woodson

5



and Melcher, 1968). In addition, the steel ball cannot be simplified as a point in this practical
problem. This will cause a variation of the magnetic flux through the ball as its position changes.
Thus the simulation data seem more suitable for the purposes of this project.

5 Derivation of the 1D Transfer Function

5.1 Physical Model and Assumptions

There are several methods of obtaining the transfer function for this system (Barie and Chiasson,
1996; Gazdos et al., 2011; Kumar E and Jerome, 2013). All methods follow a similar procedure
of building the mathematical model from a free body diagram, linearising the system at the
operating point, calculating the original unstable transfer function and then stabilising the
transfer function.

To derive the 1D transfer function, a similar process was followed. Firstly, the copper coils are
assumed to be perfectly wound and the materials of the ball and the core are uniform. Secondly,
there are only gravitational and magnetic forces affecting the movement of the ball which meant
the effect of air resistance could be neglected. Thirdly, the effect of magnetic hysteresis was
neglected. Hence the magnetic force was a formula of the current and it did not change with
time for a given current. In addition, the relationship of current and displacement was linear
at the operating point and was accurate over a small area. However, this did not mean the
relationship was linear for the whole region, the relationship was given in the previous section.

Based on these assumptions, the magnetic levitation system was modelled as shown in Figure
4.

Figure 4: Physical model of the steel ball and solenoid

5.2 Calculation Process

Due to Newton’s second law, the movement of the steel ball could be expressed as:

mẍ = Fm −mg (5.1)
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Where m is the mass of the steel ball which is 0.028 kg, x is the position of the ball and Fm is
the magnetic force.

Then, a damping term could be included and the magnetic force could be calculated as:

mẍ− kdẋ =
kpki

2kcu
2

x2
−mg (5.2)

Where kd is the damping constant which is assumed as 0.02 Ns/m, kp is the position sensor
gain which is calculated as 68.18V/m based on our sensor design, ki is the amplifier gain which
is 0.29A/V and where kc is the coil constant which is about 1 × 10−6Nm2/A2 (Gazdos et
al., 2011). It is noted that the simulation results are linearised at the equilibrium position of
x = 3cm to get a transfer function suitable for a Laplace Transform.

Thus a matrix equation (Barie and Chiasson, 1996) could be written for this linearised model
as

x = Ax+Bu (5.3)

x =
[
x ẋ

]
A =

 0 1
2g

kiu
√

kc
mg

kd
m

 B =

[
0

2kpg
u

]
(5.4)

Next, the transfer function could be calculated (Gazdos et al., 2011) as

G(s) = [1 0] · (s · I −A)−1 ·B (5.5)

where I is the identity matrix. Hence the transfer function of the system is

U(s)

X(s)
= G(s) =

767

s2 − 0.7s− 1723
(5.6)

However, this transfer function is not stable, as there is one pole (s = 41.86) on the right half
of the complex plane. In order to stabilise the transfer function, spectral factorisation method
is implemented. It can keep the amplitude information of the transfer function while making
it stable (Overdijk, van de Wouw and de Kraker, 2001). Implementing this technique in the
transfer function, the denominator of the new transfer function f(s) could be obtained by

f(s)f(−s) = g(s)g(−s) (5.7)

which is an equation on complex plane and g(s) represents the denominator of G(s).

Solving this complex equation gives

F (s) =
b0

s2 + a1s+ a0
(5.8)

b0 =
2kpg

u
a1 = −kd

m
a0 = − 2g

kiu
√

kc
mg
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After replacing the coefficients with the variables we have mentioned before, we could get the
stable transfer function of

U(s)

X(s)
= F (s) =

64

s2 + 83s+ 1723
(5.9)

which would be used in the control system.

6 Control System Design

6.1 Genetic Algorithm for PID Parameters

6.1.1 Genetic Algorithm

A genetic algorithm (GA) was used for two separate elements of the project.

To tune the “1D” controller, GA was employed because, given the nonlinear nature of the
system, the spectrum of appropriate Proportional, Integral and Derivative (PID) controller
values was greatly reduced. Furthermore, when trialled, the Ziegler-Nichols method did not
produce stable results suitable for further hand-tuning. Secondly, for our physical 1D system,
similar issues were found with the Ziegler-Nichols approach, so a GA was designed and written
in Python to automatically find suitable PID values to be used by the control system (Amaral
et al., 2005).

The genetic algorithm as a concept is founded on Darwinism and natural selection (survival of
the fittest). It works on the basis that individuals in a population have different traits and these
traits are heritable. If an individual carries a trait that is better suited to the environment it is
in, it is more likely to survive than an individual with less beneficial traits. Those individuals
that survive can then repopulate, carrying their beneficial traits forward to the succeeding
population. However, Darwinism also states that mutations can occur, and these play an
important role in developing the individuals beyond the traits of their initial population. While
some mutations may have negative consequences, other mutations cause new beneficial changes
which might result in an even better individual than the previous best.

Figure 5: A high-level map of the Generic Algorithm showing Elitism, Replication, Crossover
and Mutation operations. The algorithm’s overall procedure is also shown in the State Flow
model on the right-hand-side of the figure.

As the diagram above (figure 5) shows, the cost ‘J’ is evaluated for each individual in the

8



population of generation ‘j’; the selection rate is inversely proportional to the cost produced
by each individual. To constitute generation ‘j+1’, four operations can be done: the first is
elitism, where the best individual of each generation is immediately passed to the next. This
is important because it allows the algorithm to avoid the loss of good solutions due to genetic
drift through over-mutation. Next is crossover, where two individuals in the population can
exchange some properties and retain others as shown in the figure. Additionally, replication
can be done, whereby a random individual is also passed to the next generation without crossover
of properties. Finally, mutation can be done whereby a random parameter of the individual
is changed to a random value. This allows for a more exhaustive exploration of possible PID
values.

6.1.2 1D Simulation

For the theoretical control system, the GA was implemented using MATLAB’s GA function.
Here, the transfer function is set up by defining s as a Laplace variable. The options parameter
within the GA function allow for outputting simulation data, which provides greater insight
into the evolution of the algorithm when examined; they also set the population and generation
sizes. The cost function is present within the ‘pidtest’ code, which is used to draw the resultant
transient response for given PID values, and is computed for each generation of the GA’s
execution; the cost function returns the square of the settling error plus the square of the
settling time.

The GA function’s notation in MATLAB is as follows: ‘ga(@(K)pidtest(G,dt,K)’, where the
pidtest function contains the matrix of PID parameters (K), and the @ command focuses K as
the parameter to be changed when attempting for a lower cost function, ’J’. ’G’ is the system’s
transfer function, derived in the previous section, and ’dt’ is the time step, set to 1ms.

Using the data saved in the GA function’s execution, it is possible to view the evolution of the
K matrix, which holds the PID values shown in Figure 6:
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Figure 6: The evolution of the P, I, and D parameters (denoted by X,Y,Z respectively) is
shown for the execution of the GA. The reduction in mutation over subsequent generations is
evident here, whereby the data points are more concentrated for later generations, and more
scattered (highlighting the exploratory nature of the mutation operation) in the beginning.
Earlier generations tend towards a lighter red colour, while later generations tend toward a
lighter blue colour.

Furthermore, the evolution of cost is also shown for each population with respect to generation
progression, as shown in Figure 7:

Figure 7: This chart shows the progression of cost versus the GA’s evolution. The colour bar on
the right assigns resultant cost values to the ‘jet’ colour gradient. The highest cost achieved was
11.913. Note that the individuals in each population from 1 to 50 are organised by decreasing
selection rate to reflect the fundamental workings of the GA.

Notice the steady decrease in mutations per generation denoted by high costs for later generation
samples. The lowest cost obtained was 0.4633.
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Figure 8 shows the best transient response plotted for the nonlinear system, with no overshoot
and a 5ms settling time.

Figure 8: The system’s transient response for the best PID parameters found by the GA.

6.1.3 1D Physical System

The implementation of the genetic algorithm was similar for the physical system and was de-
signed as follows. An initial population of 50 “chromosomes” with constrained random P, I and
D parameters is created. The program iterates over all the chromosomes in the population,
measuring the “fitness” of each based on a predefined fitness function. Here, fitness is merely
the inverse of cost and is therefore maximised. This fitness function computes the inverse of the
square of the overall error of the system for a fixed number of samples. The chromosomes rated
with highest fitness are given a larger probability of being picked for crossover, thus improving
the overall population fitness over time. The mutation rate determines whether a new child
chromosome will mutate. This mutation rate was 0.33, a value obtained from a paper that used
a genetic algorithm to tune the PID parameters for a magnetic levitation rig similar to ours
(Pedersen and Yang, 2006).

6.2 Simulink Model and Virtual Reality Demonstration

To provide an appropriate PID controller for the real system, it was essential to hand-tune the
preliminary values gathered by the GA in the context of a nonlinear system. For this endeavour,
the nonlinear plant was modelled in SimuLink.
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Figure 9: Nonlinear Plant Model represented using Simulink Blocks.

This plant was subsumed into a Plant Model block, and a PID controller block was added in
cascade, forming the feedback control loop as shown below in Figure 10.

Figure 10: Full Simulink Model including two selection methods (Signal Generator and VR
‘Grab Sensor’) and an oscilloscope to evaluate the behaviour of the controlled response.

The Simulink model includes a signal generator which acts as the controller input. It also
implements a virtual oscilloscope for a visual comparison of the control input and measured
output.

Notably, the Virtual Reality (VR) ‘Source’ and ‘Sink’ blocks tie the system to a VR interface
which allows for visual interpretation and demonstration. This was built within MATLAB’s
VR World environment using the provided tutorials and examples whereby an STL model of
the real system was imported as shown in Figure 11. Furthermore, a Grab sensor was included
so that a set point for the ball can be set by interacting with the VR environment using the
computer mouse; this functionality is allowed using the ‘VR Source’ block, while the ‘VR Sink’
block provides the visual representation.
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Figure 11: The VR environment used for demonstrative purposes is shown on the left-hand-side
of the figure. In the top-right, the Ball (Transform) node is shown, which moves the ball in the
VR space via the translation branch using the output from the Simulink model as processed
through the ‘Coordinate Transformation’ block, shown in the bottom right.

The crucial part of the VR environment is the ‘Ball’ transform which allows the virtual ball to
move. The ‘translation’ branch of the ‘Ball (Transform)’ node takes inputs from the ‘Coordinate
Transformation Block’ shown in in both figures 10 and 11, which itself takes input from the
ball’s position as reported by the Simulink model. The ‘Coordinate Transformation Block’ also
hides the ball if it contacts the ‘magnet’ or ‘floor’ to avoid breaking the VR model.

6.3 Control System Tuning and Stability Analysis

Upon running the simulation using the nonlinear plant model controlled by PID values for a
linearized system, a significant 25% overshoot was observed. This discrepancy between the
linearized and nonlinear models was expected, and is shown in Figure 12 below:
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Figure 12: The output from the oscilloscope in the Simulink model compares the control signal
(yellow) to the output position signal (blue). Here, the sensor voltage represents the ball’s
vertical position. The maxima and minima set for the controller are 0.8 and 0.2 respectively.

To improve the response, the PID controller was tuned with respect to the nonlinear plant model
in Simulink; the initial and final hand-tuned responses are shown alongside their respective
PID values in Figure 13. The discrepancy in response between the tuner environment and the
simulation is due to the parameter ‘N’, the filter coefficient which tends closer to a true derivative
(D) controller value when increased. It was set low here to avoid crashing the simulation and did
not represent the actual Derivative value for the controller. However, the hand-tuned system
provided its own value which was usable without issues.

Figure 13: Simulink’s PID hand-tuner. The result was a stable system with 0% overshoot, a 9ms
settling time, and infinite gain margin and a 90 degree phase margin. This is an improvement
from the previous settling time of 39ms for the nonlinear model.

To show proof of stability, the simplest method of analysis was to observe the Bode Plot. First,
consider the untuned system, shown in Figure 14:
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Figure 14: Bode plot for the untuned system showing instability at 31 rad/s due to system
resonance at this frequency.

Due to the asymptote in the bode plot, arising from the system’s natural frequency, the system
gain rises above zero for a phase of -180 degrees, indicating instability.

Comparatively, the tuned system has the following Bode response, shown in Figure 15:

Figure 15: Bode plot for the hand-tuned system showing stability as the gain is always below
zero and there is a 90 degree phase margin.
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Notice the 90 degree phase margin, and that the gain never moves above zero, despite system
resonance at 31Hz. The gain continues to decrease exponentially past 31 rad/s. This matches
with the observed simulation behavior as high frequency square-wave inputs provide control
akin to PWM operations whereby the result is a static set point for the ball taken from the
observed average voltage of the control signal.

Notably, the Nyquist plot shown in Figure 16 confirms stability since there are no encirclements
about the (−1 + 0j) point denoted with a red cross. It also corroborates the presence of
system resonance at 31.4 rad/s, since the plot’s encirclements enter the real negative axis at
this frequency which denotes a non-infinite phase margin; however, it is still stable.

Figure 16: The tuned system’s Nyquist plot is shown here with no encirclements about (−1 +
0j) which indicates stability. The encirclements penetrate the negative real axis at 31 rad/s,
corresponding to the system’s resonance frequency, although stability is still maintained here.

To further replicate a realistic system, 2ms input signal and controller delays were added to
the model as shown in Figure 10, and new correspondent PID values were tuned as shown
in Figure 17; this delay value was chosen after examining the testing rig. The tuning that
ensued was crucial to the procurement of appropriate PID values, as the inclusion of delays can
greatly impact system performance (notice the 70% overshoot and 70ms settling time in the
figure below). The re-tuned system was shown to be stable for delays of 2ms and a controller
sampling rate of 1kHz.
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Figure 17: Re-tuning the system with a 2ms controller delay, which impacted the performance
and demanded new PID values. The final system response is characterized by a 0.0461% over-
shoot and a 9ms settling time, although the system is within sub-5% discrepancy as early as
2ms from the actuation time.

7 Physical System Design

7.1 Electromagnets

Various electromagnets were wound and tested during the research stage while specifications
of the system were being explored through simulations. Table 2 below shows the properties of
each electromagnet that was made.

Table 2: Electromagnet Revisions

Magnet v1 v2 v3 v4 v5

Number of turns 110 210 210 210 410

Core Diameter 10mm 12mm 12mm 16mm 15mm

Length 70mm 35mm 50mm 100mm 100mm

Core Material Steel Bolt Stainless Steel Steel Bolt Steel Bolt Cast Iron

Wire Thickness 1.5mm 1.5mm 0.5mm 1.5mm 0.75mm

Suitable No No No Yes Yes

Due to the limited budget of the project they were made using scrap materials and spare
insulated copper wire. These were all wound by hand which added an extra level of inaccuracy.
Although each property had an effect on the system, the suitability was ultimately determined
by three key factors: number of turns, core diameter and wire thickness.
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Figure 18: Electromagnets that were wound for testing

The first three versions were not suitable for three different reasons. V1 did not have enough
turns to attract the ball, V2 did not have a ferromagnetic core and so did not magnetise, and
V3 used wire that was too thin and had a very high internal resistance.

V4 and V5 performed well but ultimately V5 was used as it had the most accurately wound
coils, used an iron core and showed the best results during testing.

7.2 Test Rig

The test rig serves three purposes to the overall system. It holds the magnet in place, allows for
different sensors to be used, and provides easy adjustment of the levitation height. The rig was
made from plastics to minimise its interaction with the magnetic circuit as that would interfere
with the predicted system behaviour. Fortunately, 3D printers are abundant at the university,
making construction from plastics easy and convenient.

Second to the functional aspects of the system, it is important that there is good visibility of
the electromagnet and ball so that levitation can be monitored. Therefore a design featuring
a top and bottom plate with four pillars connecting them together was used. The bottom was
secured with M5 bolts while the top section used extruded plastic sections to connect to the
base. This difference was to remove any pieces of conductive material from the magnetic circuit.
Figure 19 shows the design of the final test rig that was used.
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Figure 19: Test rig

Furthermore this test rig featured an adjustable mount so that the ball’s distance could be
easily adjusted which proved useful during the experimental phase.

8 Sensors

8.1 Photovoltaic Cell

The sensor that we elected to use for locating the ball was a photovoltaic (PV) cell. The PV
cell was placed on one side of the rig and a light source on the other such that the ball being
levitated was in between the two. As the ball started to levitate, it cast a larger shadow on the
PV cell and hence decreased its output voltage.

8.1.1 Procurement

Due to the limited budget, purchasing either a PV cell or light source was outside the scope
of the project. The PV cell was taken from a solar cell phone charger and the light source
came from a small flashlight where the control circuitry was removed as it had a built in buck
boost converter which meant that the output light was discontinous. The discontinuity would
not have been a problem during intended use of the light as the frequency was too high to be
observed, it caused significant problems for the sensor.

8.1.2 Sensor Readings

To get readings with as low a latency as possible, (given that the Raspberry Pi does not have
the ability to read analogue signals) a protocol was developed for an Arduino where it would
wait for an interrupt signal from the Raspberry Pi, when it received this signal, it would take
a sensor reading and split the resultant voltage into 4 bytes for higher transfer speeds and then
send it back to the Raspberry Pi. This allowed for the frequency of the controller to operate
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at around 2kHz and the latency be less about 1.5ms. With more work, this could have been
further reduced but based on our theoretical models, this was deemed sufficient.

8.1.3 Challenges

There were two persistent challenges facing the use of the combination of PV cell and light
source as a position sensor for the system. The first one was the issue of non-linearity in the
sensor and the other was the noise in the sensor. These problems partially arose from the nature
of analogue sensors but primarily from the fact that the equipment came from taking cheap
electronics apart and was never intended to be used as a sensor.

Linearisation

Linearisation of the ball caused two main challenges, the first one was rather simple and was
caused by the spherical shape of the ball. This meant that the rate at which the shadow grew as
the ball moved was a function of its position. This could have been easily addressed by solving
a differential equation of the form:

V ∝ dV

ds

where V itself is a function of the light intensity, the geometric properties of the ball and its
position. This would have been easily solvable if it were not for the second factor affecting the
linearisation of the sensor.

This second factor is that the ball was not just moving in the y dimension but was also moving
in the x and z directions as a result of bouncing from overshoots occurring during the tuning
process. The fact that the ball was moving in the x direction (the axis on which both the light
and PV cell were on) meant that the shadow would grow and shrink as the ball moved along
that axis.

One possible solution to the linearsation problem would have been to make a small slit in the
PV cell and cover the rest in an opaque material, this would have meant that the sensor could
have, in effect, been linearised. However, as the ball was moving in the z direction, this was not
an option for us.

In the end, the attempts at linearising the sensor all added an unacceptable sacrifice in reliability
and robustness of the reading. As a result the non-linear sensor was used but this does present
a scope for further research.

Noise

There were two primary sources of noise on the system, the first from the 100Hz frequency
emitted by the ceiling lights. There was an attempt at electronic filtering of this using a simple
low pass filter but the 100Hz was close enough to the operating frequency of the system to
cause problems with the sensor signal. Therefore, a mechanical shielding system was devised
instead for the purposes of prototyping (fig 20). This proved effective for blocking the signal
from the ceiling lights but did obstruct the view of the ball thus making the setup impractical
for demonstration purposes. This could have been overcome by a stronger light source or by
adding a colour filter on the PV cell and using a coloured LED for the light source but these
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options were outside the scope of this project.

Figure 20: Shielding from lightbulbs 100Hz interference

The other significant problem that persisted throughout the project was the noise on the signal.
Both the power supply and other electrical equipment in the lab supplied high frequency noise
to the sensor, which, due to its low power output, was especially susceptible to this kind of noise,
pushing the signal to noise ratio up to 10%. The problem was partially solved by wrapping
the wires for the sensor in tinfoil, forming a makeshift Faraday cage, which blocked most of the
electromagnetic interference. Additionally, the strength of the signal was boosted using a unity
gain amplifier which further decreased the effect of the noise, down to less than 2%. However,
this initially caused problems with the magnetic driver circuit overheating (see section 9).

Figure 21: Unshielded signal
without Amplifier

Figure 22: Shielded signal with-
out Amplifier

Figure 23: Shielded signal with
Amplifier and filter

8.2 Lasers and Photodiodes

Pairs of lasers and photodiodes can be used to measure the height of the ball over a set range
by focusing the beams of light at the centre of the test rig. In this implementation six lasers
and six photodiodes were arranged into an offset pattern as shown in 24 (a) to achieve a range
of 6mm and resolution of 1mm.
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(a) Spacing (b) Angles

Figure 24: Geometry of laser system

The lasers were mounted inside angled slots with the geometry shown in 24 (b) so that they
converged at the point where the ball would be moving. The photodiodes had a response time
of 9ns but the readings had to go to an ADC so there was an overall 1ms response time. This
could have been reduced by using a faster microcontroller or a lower level programming language
such as C++.

8.3 Other Considered Sensor Options

8.3.1 Computer Vision

Figure 25: Still of computer vision tracking ball bearing

Computer vision had the potential to be an ideal option for this project; it offers accurate
tracking of the ball and with implementation of stereo cameras has the potential to scale into
both two and three dimensions of control. However, after some testing it was discarded for not
having a quick enough read speed for our purposes.

There was an initial hope that the read rate could have been made high enough for computer
vision to be usable for the project, and as a result, a lot of effort was put into making computer
vision a viable option for the project. Creating an algorithm capable of identifying and tracking
the ball was relatively easy to develop but the challenge came in being able to do this quickly
enough to make computer vision a useful sensor. The initial approach for tracking the ball was
to use a combination of a colour filter and a gradient based approach where the colour filter
would initially identify the ball and the gradient method was used to follow it as it moved. This
however turned out to take too long and would have problems with smudging of the picture
when the ball was moving fast. Instead, the gradient filter was abandoned and replaced by a
‘centre of mass’ calculation algorithm of the ball based soley on the colour filter. (The colour
filter calculated the proportion of orange within each pixel). The centre of mass calculations
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proved much more accuracy, as the smudging was roughly equal on top and bottom parts of
the ball and, as can be seen in Figure 25, although the algorithm cannot exactly estimate the
shape of the ball, it still finds the centre of it accurately and this is what was important to us.

Although this approach seemed promising, we soon learned that we needed a sample rate
of at least 200Hz and a delay of less than 5ms, and although 200 fps are within reach of
high end cameras and a 5ms delay is within the reach of most computers given a sufficiently
optimised algorithm, we did not have access to such a camera and as this project is focused on
engineering rather than computer science, we did not think it worth investing time in optimising
an algorithm to that point.
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8.3.2 Photoresistor

Photoresistors are, as the name implies, resistors that are sensitive to light. The resistance of
the sensor changes as the light incident on the sensor changes. This means that we could have
placed a number of them in an array and positioned them vertically on one side of the ball
bearing with a light source on the other side. Then we would be able to tell whether the ball
was in front of a particular sensor as it would cast a shadow on the sensor, thereby letting us
track its location. Additionally, they are very cheap and simple to use. Furthermore, for the
operational read speeds that we were intending, their innate capacitance is insignificant which
could have made them ideally suited for this operation but unfortunately, the ones available
to us were far too large meaning that they would not be able to accurately enough track the
position of the ball bearing.

8.3.3 Ultrasonic Sensor

Another sensor that was considered was an ultrasonic distance sensor. It would have been cheap
and easy to work with but it was discarded before we even started to figure out how to place it,
as the datasheet verified that it was not accurate enough nor did it have an acceptable sample
rate. It was therefore discarded at the stage of reading datasheets

8.3.4 Charged Coupled Device

Similar to the sensor of a camera, a charged couple device (CCD) relies on the photoelectric
effect to build up an electric field in a capacitor or series of capacitors to measure the light
incident on it over a period of time (until the capacitor is discharged). This type of sensor
would have been ideal for us as it had given us very high accuracy at a sample rate that we
ourselves could have specified. Unfortunately, a sensor of the size that we would have needed
proved too costly for the purpose of the project. However, in any future industrial application,
this sensor is the most appropriate among those that we have tested so far.

Figure 26: Photoresistor
Figure 27: Ultrasonic trans-
ducer

Figure 28: CCD
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9 Control Circuit

Figure 29: Magnetic control circuit

The control of the electromagnet was done with a single N-Channel MOSFET in a setup very
similar to a step down converter where the N-channel was chosen on the basis of availability in
the lab. Worthy of note is that reverse polarity protection diode were added to both the signal
input as well as the power input, neither of which turned out to be unnecessary precautions.

There was a general concern that the electromagnet would magnetise it’s own core which could
have had significant impacts on system performance which would have necessitated the supply of
AC current to the magnet instead of DC. This would have significantly complicated the circuitry
as an inverter would have had to be made. Additionally, this would have made operations of the
magnet less smooth as the AC current would oscillate the magnetic each cycle. These concerns
proved to be unwarranted, however, as the magnetisation of the core proved to be significantly
less that feared and seemed to not significantly affect the ball at all once the current was turned
off.

A switching frequency of 10kHz was used to ensure a continuous current in the electromagnet,
smoothing the operation and preventing voltage spikes.

One issue that appeared with the the MOSFET, when sealed inside the metal box to block out
noise, was the fact that the MOSFET overheated. This was not unexpected as a lot of current
was moving through it and was solved by adding a heatsink.
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Figure 30: Case without Heatsink Figure 31: Case with Heatsink

10 Software Control and Processing

Two factors were the main drivers behind the development of the software, the first one was
runtime; anything added to the code had to be carefully considered as this could increase the
processing time of each measurement and therefore decrease the read frequency and the latency.
This became especially evident when implementing logging features to save the performance of
the system as they initially substantially increased the processing time. This, however, was
fixed with some optimisation and proved to not be an issue. The other main driving factor
was the manipulation of the input signals; PID controllers work best when working on linear
systems with linear sensors. Two challenges arose from this. There was an initial attempt to
process the input data. Since the ball is spherical, it did not cause an even shadow on the PV
cell as it rose up, creating a non-linear sensor reading (as mentioned in section 8.1.3. There was
an attempt at modelling the shape function of the shadow cast on the PV cell but there were
too many unknowns for the attempted functions to work properly. In the end, the sensor was
modelled as a simple parabola (V ∝ s2). Although not very accurate, it was more robust to 3
dimensional movement compared to the differential equation approached initially tried.

The other piece of adjustment that needed to be done was to the actuator controller. As
shown in Figure: 3 the actuation force is proportional to the square of the distance from the
electromagnet. As a PID controller is meant to control linear systems where a constant input
to the actuator yields a constant force. In order to compensate for this, we added a function in
the software after the PID with the following functionality:

G = GPID × d2normalised

The exact effects of this were difficult to measure due to a lack of equipment but it significantly
improved system performance.

One more piece of software filtering that was added to the system was a gain limiter preventing
the gain from exceeding 1; as the PID drives a PWM controller, it cannot be set to a larger
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value than 100%. This does diverge from an ideal PID controller but cannot be avoided with
our setup.

11 Derivation of the 2D Transfer Function

After testing the 1D magnetic levitation system, the theoretical model was extended from 1D
to 2D. Based on our model and assumptions, the ball could move from the target point to any
near position. In addition, this method could also be implemented in 3D movement without
much modification.

11.1 Physical Model and Assumptions

The 2D system can be modelled as shown in Figure 32. It consists of two identical electromagnets
and a steel ball. The positive directions for x and y are also identified.

Figure 32: 2D magnetic levitation ball model.

Several assumptions were made in finding the 2D transfer functions. Firstly, all the assumptions
made in 1D model were still valid in the 2D model. Secondly, it was assumed that the y distance
between the ball and the solenoids was much greater than the x distances between the ball and
two solenoids. Hence the distance between the ball and the solenoids could be simplified as the
value of y. Thirdly, the direction of the magnetic force was assumed to be along the line between
the centre of the ball and the centre of the lower end of the electromagnetic. In addition, a
small displacement assumption was made so that the directions of F1 and F2 would not change
during the movement. This was important in deriving the transfer function, because it was
hard to deal with a term inside the root at the denominator.
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The inductance was approximated as first order accurate (Hlebowitsh, 2012) as

L(y) ≈ L0 +
L1

1 + ay
(11.1)

where 1/a is the characteristic length.

Then, the coenergy of the system (Roberge, 1975) could be expressed as

E =
1

2
L(y)I2 (11.2)

Thus the force was

F =
∂E

∂y
=
−aL1I

2

2(1 + ay)2
(11.3)

If the operating point was chosen at y = y0, the current at that point was I0 and the mag-
netic force generated at that point was F0, we could linearise the force formula at this point
(Hlebowitsh, 2012) as

F = F0(I0, y0) +
∂F

∂y
dy +

∂F

∂I
dI =

−aL1I
2
0

2(1 + ay0)2
+

a2L1I
2
0

(1 + ay0)3
dy − aL1I0

(1 + ay0)2
dI (11.4)

where I = I0 + dI and y = y0 + dy.

Due to the assumption of small displacement, the vertical balance function at the operating
point could be written as

0 = mg + F1(I0, y0) ·
y0√
x20 + y20

+ F2(I0, y0) ·
y0√

(b− x0)2 + y20

⇒ 0 = mg +
−aL1I

2
1

2(1 + ay0)2
· y0√

x20 + y20
+
−aL1I

2
2

2(1 + ay0)2
· y0√

(b− x0)2 + y20
(11.5)

At the same time, the horizontal portion of the magnetic force from two solenoids must balance
each other. This lead to

F1(I0, y0) ·
x0√
x20 + y20

= F2(I0, y0) ·
b− x0√

(b− x0)2 + y20

⇒ −aL1I
2
1

2(1 + ay0)2
· x0√

x20 + y20
=
−aL1I

2
2

2(1 + ay0)2
· b− x0√

(b− x0)2 + y20
(11.6)

If we assumed
√
x2 + y2 ≈

√
(b− x)2 + y2 (y � x and y � (b− x)), then we could obtain

I21 · x0 = I22 · (b− x0) (11.7)
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In addition, we also assumed all the coefficients so that we could calculate the example transfer
functions.

a = 1m−1 m = 1 kg L0 = 1H L1 = 0.1H

y0 = 0.1m x0 = 0.005m b = 0.02m

To maintain the ball at this position, Eq.11.5 and Eq.11.6 could be solved to find

I1 = 13.3A I2 = 7.7A

11.2 Vertical Movement

The 2D movement could be divided into two steps of vertical movement and horizontal move-
ment. We could write the vertical movement equation for the steel ball with small displacement
from the operating point as

m
d2y

dt2
= [

a2L1I
2
1

(1 + ay0)3
dy − aL1I1

(1 + ay0)2
dI1] ·

y0√
x20 + y20

+ [
a2L1I

2
2

(1 + ay0)3
dy − aL1I2

(1 + ay0)2
dI2] ·

y0√
(b− x0)2 + y20

⇒ m
d2y

dt2
= [

a2L1I
2
1

(1 + ay0)3
· y0√

x20 + y20
+

a2L1I
2
2

(1 + ay0)3
· y0√

(b− x0)2 + y20
]dy

+ [− aL1I1
(1 + ay0)2

· y0√
x20 + y20

]dI1 + [− aL1I2
(1 + ay0)2

· y0√
(b− x0)2 + y20

]dI2

(11.8)

If we had constants of

ky =
a2L1I

2
1

(1 + ay0)3
· y0√

x20 + y20
+

a2L1I
2
2

(1 + ay0)3
· y0√

(b− x0)2 + y20
(11.9)

ki1 = − aL1I1
(1 + ay0)2

· y0√
x20 + y20

(11.10)

ki2 = − aL1I2
(1 + ay0)2

· y0√
(b− x0)2 + y20

(11.11)

the equation became

m
d2y

dt2
= kydy + ki1dI1 + ki2dI2 (11.12)

It is noted that these terms are constants exclusively in the case of small displacement. However,
for a larger displacement, an accurate sensor could be used to measure the position of the ball
in a high frequency and recalculate these constants so that the small displacement assuption
could be always valid.
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After Laplace Transform, this equation became

ms2dy = kydy + ki1dI1 + ki2dI2 (11.13)

Hence the transfer functions could be found to be

∆Y (s)

∆I1(s)
=

ki1
ms2 − ky

(11.14)

∆Y (s)

∆I2(s)
=

ki2
ms2 − ky

(11.15)

If we input all the coefficients assumed in the previous section, the transfer function would
become

GPY i1 =
∆Y (s)

∆I1(s)
=

−1.10

s2 − 17.68
(11.16)

GPY i2 =
∆Y (s)

∆I2(s)
=

−0.64

s2 − 17.68
(11.17)

Based on the balance of horizontal forces, a relationship between the change of I1 and I2 could
also be built as

∆I1(s)

∆I2(s)
=
√

3 (11.18)

at the operating point mentioned before. Thus two transfer functions could be combined as one
if that relationship was always kept. For example, the vertical movement controlled by single
current I1 would be

∆Y (s)

∆I1(s)
=

−1.47

s2 − 17.68
(11.19)

11.3 Horizontal Movement

We could also write the horizontal movement equation for the steel ball with small displacement
from the operating point as

m
d2x

dt2
= [−aL1I1dI1

(1 + ay)2
] · x0√

x20 + y20
+
aL1I2dI2
(1 + ay)2

· b− x0√
(b− x0)2 + y20

⇒ m
d2x

dt2
= [− aL1I1

(1 + ay)2
] · x0√

x20 + y20
dI1 +

aL1I2
(1 + ay)2

· b− x0√
(b− x0)2 + y20

dI2 (11.20)

Then, we could introduce two constants of

ki1 = [− aL1I1
(1 + ay)2

] · x0√
x20 + y20

(11.21)

ki2 =
aL1I2

(1 + ay)2
· b− x0√

(b− x0)2 + y20
(11.22)
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Then, the equation became

m
d2x

dt2
= ki1dI1 + ki2dI2 (11.23)

After Laplace Transform,
ms2x = ki1dI1 + ki2dI2 (11.24)

Thus the transfer functions were
∆X(s)

∆I1(s)
=

ki1
ms2

(11.25)

∆X(s)

∆I2(s)
=

ki2
ms2

(11.26)

If the assumed coefficients were input into the equation, the transfer functions would be

GPXi1 =
∆X(s)

∆I1(s)
=
−0.055

s2
(11.27)

GPXi2 =
∆X(s)

∆I2(s)
=

0.094

s2
(11.28)

In horizontal movement, the vertical force balance should always be kept, which lead to

aL1I1
(1 + ay0)2

dI1 +
aL1I2

(1 + ay0)2
dI2 = 0

⇒ I1dI1 + I2dI2 = 0

⇒ ∆I1(s)

∆I2(s)
= −
√

3

3
(11.29)

Hence, the horizontal movement could be controlled by single current I1 as

∆X(s)

∆I1(s)
=
−0.22

s2
(11.30)

12 2D Control System Design

The most significant elements of this projects expansion into 2D control are the emergence of
coupled transfer functions and further emphasis on nonlinearity for the multiple-input/multiple-
output (MIMO) system. This exercise of strategizing a new control method is a theoretical one,
as budget constraints for this project do not permit the full exploration and validation of the
assumptions and simplifications made in the transfer function derivation done above. Hence, the
proposed control strategy will attempt to account for these assumptions to emulate a realistic
system.

Given the advanced scope of this system, the first step was to explore control methods attempted
by reputable sources. A satisfactory implementation was written by Hlebowitsh (2012); the
emphasis of nonlinearity in the system demands a controller that will employ fast and subtle
changes as opposed to slow changes with larger effects. The Lead-Lag Compensator satisfies
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this criterion, and is employed using variables within the transfer function, as no reasonable
assumptions can be made regarding any individual component for our theoretical system.

In the application proposed, the writers suggest using lead-lag compensation in the feedback
path to tackle the nonlinearity of the system, which is done as follows by targeting the first axis
of control:

Figure 33: Lead compensator in the feedback path for control of the horizontal dimension as
proposed by Hlebowitsh (2012).

The resultant system is characterised by:

Xb(s)

Im(s)
=

−k1
ms2−kX

−kI
ms2−kXKL

ατS+1
τs+1 + 1

=
−kI

−kIKL
ατ+1
τs+1 +ms2 − kX

=
−kI(τs+ 1)

−kIKL(ατs+ 1) + (ms2 − kX)(τs+ 1)

(12.1)

As the determination of the stability of this equation is laborious, the root locus method is used
instead, where the loop gain can be expressed as:

−kI
ms2 − kX

KL
ατs+ 1

τs+ 1
(12.2)

This identifies system poles at ±
√

kx
m and −1

τ , with a zero at −1
ατ .

The resultant root locus plot is shown here

Figure 34: Root locus plot by Hlebowitsh (2012)
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At KL = 0, the poles of the open-loop poles of the transfer function, G(s)H(s) are the starting
point of the root locus plot. These are denoted by an ”x” in the figures 34 and 35. As KL

increases, the poles begin moving towards the zeros of the open-loop transfer function, G(s)H(s).
These are denoted by an ’o’ in figures 34 and 35.

Hence, it can be seen from the plot that the lead compensator provides stability to the nonlinear

system by moving the extraneous pole
√

kx
m into the negative real axis for high gains. Thus, it

is a suitable controller. Crucially, as the transfer function for the 2D system can be described
similarly, albeit with different constants, this control method is applicable there as well. Here is
the tuning result using a complex pole for one our horizontal component controlled by solenoid
1 shown as an exercise. This uses arbitrary values for the transfer function variables:

Figure 35: Root locus plot where a compensator has been implemented, and the gain has been
increased to result in stable behaviour with a settling error of 0.015%. The poles have moved
to the location of the zeros with an increase in Gain.

The control strategy proposed by this Hlebowitsh (2012), however, is at odds with this project’s
goal of 2D levitation. Their proposed system is not described in detail, so the descriptive control
method must be inferred from their diagrams; here is their control model:

Figure 36: Proposed control model by (Hlebowitsh, 2012)

They argue that by limiting the vertical displacement to near-zero, they are able to provide
stable control of the system in the horizontal direction. Hence, although their control strategy
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is one of two axes, as there is control over the vertical displacement, the effective result is single-
axis motion in the horizontal direction. This means that their setup must be calibrated for a
static vertical component for each demonstration.

Each of their transfer functions is simplified to discard its respective coupled component so that
it can instead be implemented via superposition within the control model itself; that is to say,
the horizontal transfer function discards the influence of the balls vertical position, and vice
versa. Furthermore, the same current is used to control both solenoids. This is a good method
of linearizing the model, but the implementation of feedback is limiting.

It can be seen from their control diagram that the model sums the effect of each solenoid in
the 2-solenoid setup to account for the vertical force on the ball and subtracts the effect of the
second solenoid from the first to account for the horizontal force on the ball. This is accurate
in relation to the free-body-diagram. However, in the feedback path, their reliance on a single
current to control both solenoids causes complications.

This approach only works with the assumption that either the horizontal or the vertical dis-
placement can be set to zero and is hence negligible; they have chosen the latter to be set to
zero in this case and have thereby linearized their model. Hence, they system implements ’2D’
control as it considers both components of motion, but the effective result of motion is still
1-dimensional, as the fundamental focus of the contorller is to limit vertical movement to allow
for horizontal movement using a linearized model.

The following control strategy proposes to eliminate this limitation by controlling each solenoid
with a separate current, as shown in the transfer function derivations in the previous section.
The method employed is inspired by the strategy described above, with the difference being that
it is improved to provide ’2D’ movement, not just ’2D’ control. This is done by implementing a
switching control method, whereby to move the ball to the target point, the actuation is done
in small linearized steps. As shown in Figure 37, each iterative step, if made sufficiently small,
- as known to be possible using a lead-lag compensator - can disregard the effect of its coupling
nonlinear terms. Hence, it is possible to validate the linearization by iteratively changing the
system’s equilibrium point and controlled variable throughout the course of the ball’s motion.
The fundamental forseeable limitation in this approach is the high computing power required
to measure and actuate such small steps, as larger steps are more susceptible to the effects of
nonlinearity. The high-level description of this strategy is shown below:
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Figure 37: Iterative step motion strategy. During horizontal movement, the vertical component
is unchanged. During vertical movement, the horizontal component is unchanged

This new control strategy can be described by the MIMO system shown below, where com-
pensators for i1 and i2 are inferred to be similar to those of a 1D system, as was done by
(Hlebowitsh, 2012).

Figure 38: GpY i1 refers to the plant model describing the relationship between the vertical
displacement and the current from solenoid 1. Similarly, GpY i2, GpXi1, and GpXi2 refer to their
respective plant models.

Here, the effects of each solenoid on each direction of displacement are described by these plant
models, and they are summed to account for the combined effects of both solenoids. GpXi1 and
GpXi2 can also be summed as the opposed effect they have on the horizontal displacement of
the ball is already accounted for in their respective transfer functions. This is in the interest of
simplifying the decoupling process described later in this section. To allow for the linearization
and independence of each transfer function, the MIMO system description is employed to ac-
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count for the coupling effect of the vertical position on the horizontal motion (and vice versa)
via indirect feedback loops. Here, the red line shows the indirect feedback path caused by the
vertical displacement error on the horizontal controller, and similarly, the orange line shows the
indirect feedback path caused by the horizontal displacement error on the vertical controller;
this is a coupled MIMO system.

Finally, to allow for the independent tuning of each compensator, it is necessary to decouple
the effect of i1 on horizontal motion and i2 on vertical motion. Linearized decoupler functions
are described using the following:

TY i2 = −GpY i2
GpY i1

TXi1 = −GpXi1
GpXi2

(12.3)

This method is illustrated in Figure 39. Notably, it should retain the effect of the vertical
position on horizontal control, and vice versa.

Figure 39: MIMO system with decoupler functions TY i2 = −GpY i2
GpY i1

TXi1 = −GpXi1
GpXi2

Here is the mathematical proof for this claim, where U1 and U2 are the control outputs from
the compensators for selenoids 1 and 2 respectively:

Eliminating GpXi1:

At the first summation block:

(TXi1 · U1 + U2)GpXi2 = −GpXi1U1 +GpXi2U2 (12.4)

At the second summation block:

GpXi1U1 +GpXi2U2 −GpXi1U1 = GpXi2U2 (12.5)

Eliminating GpY i2:
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At the first summation block:

(TY i2 · U2 + U1)GpY i1 = −GpY i2U2 +GpY i1U1 (12.6)

At the second summation block:

GpY i2U2 +GpY i1U1 −GpY i2U2 = GpY i1U1 (12.7)

A linearized decoupler is generally a gain, and is an effective method of resolving a MIMO
system; it theoretically allows for the resultant 2D control of the system, as a high gain will
enable the nullification of small errors throughout the step movement of the ball from its original
point to its target, provided the sampling rate of the controller is high enough. This was shown
in the analysis of the lead-lag compensator. The method presented here may call for the
implementation of an analogue controller as opposed to the digital one provided for the 1D rig.

One potential issue with this linearized method is in the decouplers themselves. By introducing
linear decoupler functions, it is possible that the system description was oversimplified, and that
infeasibly powerful measurement and actuation hardware is needed to meet the requirements
of iterative stepwise motion. Hence, it is noted that future investigations must be centered
on implementing 2-degree-of-freedom (DOF) plants, controllers, and decouplers with both x
and y inputs for a more accurate system description. Although data is needed to assess the
validity of this issue, it may be nevertheless be necessary to implement nonlinear decoupling for
this application. This may prove true if one considers the effects of magnetic remanence and
hysteresis, which have not been described by the transfer functions to begin with. However,
if shown to work, this model can easily be developed to describe a ’3D’ system thanks to the
expandable scope of MIMO system descriptions.

13 Conclusion

13.1 System Implementation

In the end, the system did not function reliably, it was on the verge of stable operation on
several occasions but there were simply too many unknowns for such a complicated system so
the results could not be repeated successfully. The system suffered from several problems from
noise to accuracy and precision of sensors, all of which could have been solved but given the
short timescales and lack of budget, there was not enough time to both solve these problems and
afterwards tune the system. Despite this, the project was not a failure as the system was on the
verge of working. During the literature review, no system was found that was levitating a steel
ball (all the implementations featured lifting magnets which significantly ease the levitation and
position measuring).

13.2 2D

Regarding the endeavour of implementing control in two dimensions, a wholly descriptive, albeit
linearised model of the system was developed along with an accompanying decoupling control
strategy. Although this is hypothesised to work, it relies on the assumption that our stepwise
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compensator control can be made subtle enough to permit the linearization of relevant transfer
functions. Namely, the decouplers in their present state - being linear - are merely gains. To
further build upon this paper, nonlinear decoupling should be investigated for more robust
and realistic control. However, this strategy takes the endeavour further than those presented
by all investigated sources. While the restrictive control of one of the axes places the system
somewhere between a ’1D’ and ’2D’ application, the method proposed here presents a clear ’2D’
approach. The remaining and crucial variable to this assertion is whether it will work on a real
system. Notably, if it does work, it will easily scalable into a 3D implementation.

13.3 Final Thoughts

Due to the larger than initially estimated challenge of making the 1D practical system work,
there was less scope for comparison between theory and experiment that initially expected.
Due to both the non-linearity of the system and its unstable equilibrium the equipment avail-
able proved insufficient to achieve stable levitation within the time constraints of the project.
However, with the new theory around 2D magnetic levitation developed as a proof that it is
feasible and the advances made by the experimental rig suggest that with proper equipment,
implementation should be achievable. This provides an excellent scope for further study of
magnetic levitation where permanent magnets are not an option.
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Appendix

Gantt Chart

Project Plan
Project Manager: Max Benson
Start Date: 24/09/2018
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0 Overall Project 24/09/18 29/11/18 66 100% 0.00
1 Concept and Planning 24/09/18 01/10/18 7 100% 0.00
1.1 Choose and define project 24/09/18 01/10/18 7 100% 0.00
1.2 Literature research 24/09/18 01/10/18 7 100% 0.00
1.3 High level design ideas 24/09/18 01/10/18 7 100% 0.00
1.4 Project plan MB 24/09/18 01/10/18 7 100% 0.00
2 1D Simulation MR / YX 01/10/18 31/10/18 30 100% 0.00
2.1 Development of Transfer Function YX 01/10/18 15/10/18 14 100% 0.00
2.1.1 Magnetic simulation 01/10/18 08/10/18 7 100% 0.00
2.1.2 Derivation of stable transfer function 01/10/18 15/10/18 14 100% 0.00
2.2 Development of Control System MR 01/10/18 31/10/18 30 100% 0.00
2.2.2 Control loop design (with feedforward) 01/10/18 15/10/18 14 100% 0.00
2.2.3 Graphical simulation of magnetic levitation 15/10/18 31/10/18 16 100% 0.00
2.2.4 Simulink model 15/10/18 31/10/18 16 100% 0.00
3 1D Physical System MB / EH / DC 01/10/18 29/11/18 59 100% 0.00
3.1 Rig version 1 DC 01/10/18 31/10/18 30 100% 0.00
3.1.1 Procurement of parts 01/10/18 15/10/18 14 100% 0.00
3.1.2 Build electromagnet 15/10/18 22/10/18 7 100% 0.00
3.1.3 Assemble rig 15/10/18 31/10/18 16 100% 0.00
3.2 Rig version 2 DC 31/10/18 07/11/18 7 100% 0.00
3.2.1 CAD design and 3D printing of parts 31/10/18 07/11/18 7 100% 0.00
3.2.2 Build improved electromagnet 31/10/18 07/11/18 7 100% 0.00
3.2.3 Assemble rig 31/10/18 07/11/18 7 100% 0.00
3.3 Electrical design and implementation EH 01/10/18 19/11/18 49 100% 0.00
3.3.1 Research and select sensor 01/10/18 15/10/18 14 100% 0.00
3.3.2 Specification for circuitry 01/10/18 15/10/18 14 100% 0.00
3.3.3 Design and build circuitry 08/10/18 22/10/18 14 100% 0.00

3.3.4 Reduce noise in system 05/11/18 19/11/18 14 100% 0.00
3.3.5 Improve sensor functionality 05/11/18 19/11/18 14 100% 0.00
3.4 Code Design MB / EH 22/10/18 28/11/18 37 100% 0.00
3.4.1 I2C communication system 15/10/18 22/10/18 7 100% 0.00
3.4.2 PID implementation in code 22/10/18 05/11/18 14 100% 0.00
3.4.3 Genetic algorithm to tune PID 05/11/18 28/11/18 23 100% 0.00
3.5 Laser position sensor device DC 23/11/18 27/11/18 4 100% 0.00
3.5.1 CAD design and 3D printing of parts 23/11/18 27/11/18 4 100% 0.00
3.5.2 Assembly of lasers and receivers with the parts 23/11/18 27/11/18 4 100% 0.00
4 2D Simulation MR / YX 01/11/18 19/11/18 18 100% 0.00
4.1 Development of Transfer Function 01/11/18 19/11/18 18 100% 0.00
4.2 Control strategies for 2D 01/11/18 19/11/18 18 100% 0.00
4.2.1 Assess options and examine previous works 01/11/18 08/11/18 7 100% 0.00
4.2.2 Select control strategy and develop it 08/11/18 19/11/18 11 100% 0.00
4.3 Lead / lag compensator 08/11/18 19/11/18 11 100% 0.00
4.4 Provide a workable solution to the problem 12/11/18 19/11/18 7 100% 0.00
5 Report 05/11/18 29/11/18 24 100% 0.00
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Code Base

import time
import RPi .GPIO as GPIO
import c u r s e s
import i 2 c
import c o n t r o l l e r
import c a l i b r a t e
import PID

def range check ( va lue ) :
i f value > 100 :

va lue = 100
e l i f value < 0 :

va lue = 0
return value

s c r e en = c u r s e s . i n i t s c r ( )
s c r e en . r e f r e s h ( )
c u r s e s . cbreak ( )
s c r e en . keypad ( True )
value = 1

i 2 c = i 2 c . I2C ( )
pwm = c o n t r o l l e r .PWM( )
v min = v max = 0

try :
s c r e en . addstr ( ’ p r e s s any key to s t a r t ’ )
key = 0

while ( key != 2 7 ) : #Escape key
key = sc reen . getch ( )
vo l t age = i 2 c . getVoltage ( )

i f key == c u r s e s .KEY UP:
value = value + 1

e l i f key == c u r s e s .KEY RIGHT:
value = value + 10

e l i f key == c u r s e s .KEYDOWN:
value = value − 1

e l i f key == c u r s e s .KEY LEFT:
value = value − 10

e l i f key == c u r s e s .KEY ENTER or key == 10 or key == 13 :
va lue = 0

e l i f key == 115 : #l e t t e r s
c a l = c a l i b r a t e . Ca l ib ra t e ( i2c , pwm)
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v min , v max = c a l . setup ( )
s c r e en . addstr ( str ( v max ) )
time . s l e e p (1 )

e l i f key == 32 : #SPACEBAR
l o c a t i o n = ( v min + v max ) / 2
pid = PID . PID(pwm, i2c , v max , v min )
pid . p o s i t i o n ( l o c a t i o n )

value = range check ( va lue )
pwm.DC( value )

s c r e en . c l e a r ( )
s c r e en . addstr ( ’ percentage power = ’ )
s c r e en . addstr ( str ( va lue ) )
s c r e en . addstr ( ’ ’ )
s c r e en . addstr ( ’ s enso r vo l t age = ’ )
s c r e en . addstr ( str ( vo l t age ) )
s c r e en . addstr ( ’ ’ )

#screen . a d d s t r ( s t r ( key ) )

except Exception as e :
c u r s e s . endwin ( )
pwm. cleanup ( )
raise

c u r s e s . endwin ( )
pwm. cleanup ( )

# import c l i c k

# w h i l e ( 1 ) :
# a = c l i c k . g e t c h a r ( )
# p r i n t ( a )
# i f a == ’ ’ :
# break
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import i 2 c
import time

class Ca l ib ra t e ( object ) :
def i n i t ( s e l f , i2c , pwm) :

s e l f . i 2 c = i 2 c
s e l f .pwm = pwm

def setup ( s e l f ) :
v max = s e l f . bottom ( )
v min = s e l f . top ( )

return v min , v max

def bottom ( s e l f ) :
s e l f .pwm.DC(20)
v min = s e l f . average ( )
s e l f .pwm.DC(0)

return v min

def top ( s e l f ) :
s e l f .pwm.DC(100)
time . s l e e p (2 )
v min = s e l f . average ( )
s e l f .pwm.DC(0)

return v min

def average ( s e l f ) :
time . s l e e p (2 )
v 1 = s e l f . i 2 c . getVoltage ( )
time . s l e e p ( 0 . 1 )
v 2 = s e l f . i 2 c . getVoltage ( )
time . s l e e p ( 0 . 1 )
v 3 = s e l f . i 2 c . getVoltage ( )
v ave = ( v 1 + v 2 + v 3 ) / 3

max d i f f e r ence = 0.02

i f ( abs ( v ave − v 1 ) > max d i f f e r ence or abs ( v ave − v 2 ) > max d i f f e r ence or abs ( v ave − v 2 ) > max d i f f e r ence ) :
raise ValueError ( ’ S i gna l to no i s e r a t i o too big , t ry b lock ing out l i g h t b u l b s ’ )

return v ave
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i f name == ’ ma in ’ :
import i 2 c
import c o n t r o l l e r
import c a l i b r a t e

c a l = Ca l ib ra t e ( i2c , pwm)
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”””
Modif ied GA code from SOURCE
”””

import random
import math
import numpy as np
import csv
import time
import RPi .GPIO as GPIO
import c u r s e s
import i 2 c
import c o n t r o l l e r
import c a l i b r a t e
import PID

MAX TIMESTEPS = 150
POPULATION SIZE = 50 # 100 (my v a l u e s are from a paper on GAs f o r magnetic l e v i t a t i o n PID tuning . . . )

# h t t p :// c i t e s e e r x . i s t . psu . edu/ viewdoc / download ? doi =10.1.1.421.36& rep=rep1&type=pdf
MUTATION PROBABILITY = 0.33 # 0.1
CROSSOVER RATE = 0.9 # 0.7
MAX RUNS = 100 # g e n e r a t i o n s
FITNESS THRESHOLD = 5
MAX GAIN VALUE = 1
LINE SMOOTHNESS = . 1

class Chromosome :
def i n i t ( s e l f , kp , ki , kd ) :

s e l f . kp = kp
s e l f . k i = k i
s e l f . kd = kd

”””
1 [ S t a r t ] Generate random p o p u l a t i o n o f n chromosomes ( s u i t a b l e s o l u t i o n s f o r the problem )
Creates a random genome
”””
def g e n e r a t e i n i t i a l p o p u l a t i o n ( ) :

print ( ” Generating i n i t i a l populat ion . . . \ n” )
random . seed ( )
populat ion = [ ]
for i in range (POPULATION SIZE ) :

populat ion . append ( i )
# c r e a t e a random chromosome with a random gain v a l u e
populat ion [ i ] = Chromosome( random . random ( ) ∗ MAX GAIN VALUE ∗ 1000 , random . random ( ) ∗ MAX GAIN VALUE / 1000 , random . random ( ) ∗ MAX GAIN VALUE)

return populat ion

”””
2 [ F i t n e s s ] Eva luate the f i t n e s s f ( x ) o f each chromosome x in the p o p u l a t i o n
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r e t u r n s the f i t n e s s v a l u e accord ing to the f i t n e s s f u n c t i o n
F i t n e s s i s how long the b a l l remains inbetween the top and bottom wi thout touch ing
”””
def f i t n e s s ( samples ) : # ∗∗MAKE THIS WORK. . . ∗ ∗

# 1. g e t top and bottom v o l t a g e v a l u e s ( as we a l r e a d y do )
# 2. measure v o l t a g e at every time i n t e r v a l ( as we a l r e a d y do )
# 3. w h i l e measured v o l t a g e != ( top or bottom v o l t a g e s ) : keep going , don ’ t cap at 1000 samples ( i t e r ++)
# 4. when measured v o l t a g e == ( top o f bottom v o l t a g e s ) : f i t n e s s = number o f samples b e f o r e t h i s happened
# t h i s might t ake a w h i l e to g e t go ing though . . .
a b s e r r o r s = np . abso lu t e ( samples )
sum errors = np .sum( a b s e r r o r s )
f i t n e s s = 1 / sum errors

return f i t n e s s

”””
Run s i m u l a t i o n f o r a s p e c i f i c chromosome c .
Returns the f i t n e s s f u n c t i o n v a l u e o f the s i m u l a t i o n
”””
def run s imulat ion for chromosome ( populat ion , chromosome ) : # ∗∗MAKE THIS WORK AND DO OTHER IMPORTANT STUFF LIKE LOGGING∗∗

f i t n e s s = 0
pid = PID . PID(pwm, i2c , v max , v min , po s i t i on , populat ion [ chromosome ] . kp , populat ion [ chromosome ] . ki , populat ion [ chromosome ] . kd ) # custom PID f o r chromosome k v a l u e s
print ( ”\nkp = {}\ nki = {}\nkd = {}\n” . format ( populat ion [ chromosome ] . kp , populat ion [ chromosome ] . ki , populat ion [ chromosome ] . kd ) )
e r r o r s = pid . p o s i t i o n ( ) # performs PID c o n t r o l and r e t u r n s l o c a t i o n data f o r b a l l
pwm.DC(0)

f i t n e s s = f i t n e s s ( e r r o r s )

print ( ’ f i t n e s s i s {} ’ . format ( f i t n e s s ) )
# l o g g i n g
# l e n g t h = np . t ra nspo se ( np . l i n s p a c e (0 ,999 ,1000))
# l o c a t i o n = np . t ra nsp ose ( l o c a t i o n )
# myData = [ l eng th , l o c a t i o n ]
# date = date t ime . date t ime . now ( ) . s t r f t i m e (”%H−%M−%S−%B−%d−%Y”)
# f i l ename = ’ . / l o g s /PID−Response−’ + chromosome + date + ’. csv ’ # t h i s won ’ t work f o r m u l t i p l e g e n e r a t i o n s ( i t ’ s temporary )
# myFile = open ( f i lename , ’w ’)
# with myFile :
# w r i t e r = csv . w r i t e r ( myFile )
# w r i t e r . wr i terows (myData)

f i t n e s s += 1

return f i t n e s s

”””
From Emil ’ s code
”””
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def range check ( va lue ) :
i f value > 100 :

va lue = 100
e l i f value < 0 :

va lue = 0
return value

”””
Run the s i m u l a t i o n f o r the s e t o f a l l chromosomes
”””
def run s imu la t i on ( populat ion , gene ra t i on ) :

f i t n e s s v a l u e s = np . z e r o s (POPULATION SIZE)
for chromosome in range (POPULATION SIZE ) :

print ( ” Generation : {}” . format ( gene ra t i on ) )
f i t n e s s v a l u e s [ chromosome ] = run s imulat ion for chromosome ( populat ion , chromosome )
time . s l e e p ( 0 . 5 )

return f i t n e s s v a l u e s

”””
Pick two parents accord ing to p r o b a b i l i t y r e p r e s e n t e d by normal ized f i t n e s s v a l u e s
3a [ S e l e c t i o n ] S e l e c t two parent chromosomes from a p o p u l a t i o n accord ing to t h e i r f i t n e s s ( the b e t t e r f i t n e s s , the b i g g e r chance to be s e l e c t e d )
”””
def s e l e c t i o n ( f i t n e s s v a l u e s ) :

# normal ize the l i s t so we have p r o b a b i l i t i e s to p i c k parents
f i t n e s s v a l u e s = normListSumTo ( f i t n e s s v a l u e s , 1)
parents = [ ]
random . seed ( )
p a r e n t 1 p r o b a b i l i t y = random . random ( )
p a r e n t 2 p r o b a b i l i t y = random . random ( )

sum = 0
for i in range (POPULATION SIZE ) :

i f len ( parents ) == 2 :
break

next sum = sum + f i t n e s s v a l u e s [ i ]
i f p a r e n t 1 p r o b a b i l i t y <= next sum and p a r e n t 1 p r o b a b i l i t y >= sum :

parents . append ( i )
i f p a r e n t 2 p r o b a b i l i t y <= next sum and p a r e n t 2 p r o b a b i l i t y >= sum :

parents . append ( i )
sum = next sum

return parents

def normListSumTo (L , sumTo=1):
’ ’ ’ normal ize v a l u e s o f a l i s t to make i t sum = sumTo ’ ’ ’

t o t a l = sum(L)
return [ x /( t o t a l ∗1 . 0 )∗ t o t a l for x in L ]

48



”””
3b [ Crossover ] With a c r o s s o v e r p r o b a b i l i t y c r o s s over the parents to form a new o f f s p r i n g ( c h i l d r e n ) .
I f no c r o s s o v e r was performed , o f f s p r i n g i s an e x a c t copy o f parents .
”””
def c r o s s o v e r ( populat ion , parents ) :

random . seed ( )

# i f we dont crossover , o f f s p r i n g i s a copy o f parents
i f random . random ( ) > CROSSOVER RATE:

return populat ion [ parents [ 0 ] ]
else :

# random combination c r o s s o v e r
number = random . random ( )
i f number < . 2 5 :

return Chromosome( populat ion [ parents [ 1 ] ] . kp , populat ion [ parents [ 1 ] ] . kd , populat ion [ parents [ 1 ] ] . k i )
e l i f number < . 5 :

return Chromosome( populat ion [ parents [ 0 ] ] . kp , populat ion [ parents [ 1 ] ] . kd , populat ion [ parents [ 1 ] ] . k i )
e l i f number < . 7 5 :

return Chromosome( populat ion [ parents [ 0 ] ] . kp , populat ion [ parents [ 0 ] ] . kd , populat ion [ parents [ 1 ] ] . k i )
else :

return Chromosome( populat ion [ parents [ 0 ] ] . kp , populat ion [ parents [ 0 ] ] . kd , populat ion [ parents [ 0 ] ] . k i )

”””
3c [ Mutation ] With a mutation p r o b a b i l i t y mutate new o f f s p r i n g at each l o c u s ( p o s i t i o n in chromosome ) .
”””
def mutation ( chromosome ) :

random . seed ( )

i f random . random ( ) < MUTATION PROBABILITY / 3 :
#very sma l l r e a l va lued mutation
chromosome . kp = chromosome . kp + random . random ()/MAX GAIN VALUE
i f chromosome . kp < 0 :

chromosome . kp = random . random ( ) ∗ MAX GAIN VALUE

e l i f random . random ( ) < MUTATION PROBABILITY ∗ 2/3 :
chromosome . k i = chromosome . k i + random . random ()/MAX GAIN VALUE
i f chromosome . k i < 0 :

chromosome . k i = random . random ( ) ∗ MAX GAIN VALUE

e l i f random . random ( ) < MUTATION PROBABILITY:
chromosome . kd = chromosome . kd + random . random ()/MAX GAIN VALUE
i f chromosome . kd < 0 :

chromosome . kd = random . random ( ) ∗ MAX GAIN VALUE

return chromosome

”””
3 [ New p o p u l a t i o n ] Create a new p o p u l a t i o n by r e p e a t i n g f o l l o w i n g s t e p s u n t i l t he new p o p u l a t i o n i s complete
”””
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def generate new popu lat ion ( f i t n e s s v a l u e s , p rev ious popu la t i on , gene ra t i on ) :
new populat ion = [ ]
print ( ”\nGenerating new populat ion . . . \ n” )
with open( f i l ename , ”w” ) as m y f i l e :

w r i t e r = csv . w r i t e r ( m y f i l e )
for i in range (POPULATION SIZE−1): # saves one space f o r e l i t i s t s e l e c t i o n

new populat ion . append ( i )
# s e l e c t i o n
parents = s e l e c t i o n ( f i t n e s s v a l u e s )

# c r o s s o v e r
chromosome = c r o s s o v e r ( populat ion , parents )

# mutation
chromosome = mutation ( chromosome )
new populat ion [ i ] = chromosome
# l o g kp , ki , kd , generat ion , chromosome ( r e l a t i v e )
kp = populat ion [ chromosome ] . kp
k i = populat ion [ chromosome ] . k i
kd = populat ion [ chromosome ] . kd
my data = [ generat ion , chromosome , kp , ki , kd , 0 ]
f i l ename = ’ . / l o g s /GA PID parameters ’ + ’ . csv ’
w r i t e r . wr i terows ( my data )

”””
Perform h y b r i d e l i t i s t s e l e c t i o n . Carry the b e s t chromosome over to the new popu la t ion , unmutated .
”””
chromosome = populat ion [ np . argmax ( f i t n e s s v a l u e s ) ]
new populat ion . append (POPULATION SIZE−1)
new populat ion [POPULATION SIZE−1] = chromosome

# l o g kp , ki , kd , generat ion , chromosome ( r e l a t i v e )
kp = populat ion [ chromosome ] . kp
k i = populat ion [ chromosome ] . k i
kd = populat ion [ chromosome ] . kd
my data = [ generat ion , chromosome , kp , ki , kd , 1 ]
f i l ename = ’ . / l o g s /GA PID parameters ’ + ’ . csv ’
with open( f i l ename , ”w” ) as m y f i l e :

w r i t e r = csv . w r i t e r ( m y f i l e )
w r i t e r . wr i terows ( my data )

return new populat ion

def f i l e l e n ( fname ) :
with open( fname ) as f :

for i , l in enumerate( f ) :
pass

return i + 1
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”””
Main
1 [ S t a r t ] Generate random p o p u l a t i o n o f n chromosomes ( s u i t a b l e s o l u t i o n s f o r the problem )
2 [ F i t n e s s ] Eva luate the f i t n e s s f ( x ) o f each chromosome x in the p o p u l a t i o n
3 [ New p o p u l a t i o n ] Create a new p o p u l a t i o n by r e p e a t i n g f o l l o w i n g s t e p s u n t i l t he new p o p u l a t i o n i s complete

3a [ S e l e c t i o n ] S e l e c t two parent chromosomes from a p o p u l a t i o n accord ing to t h e i r f i t n e s s ( the b e t t e r f i t n e s s , the b i g g e r chance to be s e l e c t e d )
3b [ Crossover ] With a c r o s s o v e r p r o b a b i l i t y c r o s s over the parents to form a new o f f s p r i n g ( c h i l d r e n ) . I f no c r o s s o v e r was performed , o f f s p r i n g i s an e x a c t copy o f parents .
3c [ Mutation ] With a mutation p r o b a b i l i t y mutate new o f f s p r i n g at each l o c u s ( p o s i t i o n in chromosome ) .
3d [ Accept ing ] Place new o f f s p r i n g in a new p o p u l a t i o n

4 [ Replace ] Use new generated p o p u l a t i o n f o r a f u r t h e r run o f a l go r i th m
5 [ Test ] I f the end c o n d i t i o n i s s a t i s f i e d , stop , and re turn the b e s t s o l u t i o n in curren t p o p u l a t i o n
6 [ Loop ] Go to s t e p 2

”””

#################################################################################################################################################
#
# NOTE: F i t n e s s v a l u e s i s indexed by chromosome number , so i f we at tempt to s o r t i t ,
# we w i l l p i c k the wrong index when g e n e r a t i n g a new p o p u l a t i o n . Which would be bad .
#
#################################################################################################################################################

# screen = c u r s e s . i n i t s c r ( )
# screen . r e f r e s h ( )
# c u r s e s . cbreak ()
# screen . keypad ( True )
# v a l u e = 1

gene ra t i on = 1

i 2 c = i 2 c . I2C ( )
pwm = c o n t r o l l e r .PWM( )
v min = v max = 0

try :
# screen . a d d s t r ( ’ p r e s s any key to s t a r t ’ )
# key = 0

c a l = c a l i b r a t e . Ca l ib ra t e ( i2c , pwm)
v min , v max = c a l . setup ( )
p o s i t i o n = ( v min + 2∗v max )/3
f i l ename = ’ . / l o g s /GA PID parameters ’ + ’ . csv ’
try :

f = f i l e .open( f i l ename )
f . c l o s e ( )

except FileNotFoundError :
print ( ’ \ nFi l e does not ex i s t , c r e a t i n g new log f i l e \n ’ )
header = [ ” gene ra t i on ” , ”chromosome no . ” , ”kp” , ” k i ” , ”kd” , ” e l i t e ?” ]
with open( f i l ename , ”w” ) as m y f i l e :
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w r i t e r = csv . w r i t e r ( m y f i l e )
w r i t e r . wr i terows ( header )

i f f i l e l e n ( f i l ename ) > POPULATION SIZE:
with open( f i l ename , ” r ” ) as m y f i l e :

r eader = csv . r eader ( m y f i l e )
gene ra t i on = reader [ −1 ] [ 0 ] # f i n a l chromosome ’ s g e n e r a t i o n no . ( shou ld be the same f o r the l a s t 50 l i n e s )
populat ion = [ ]
for l i n e in reader :

kp = l i n e [ 2 ]
k i = l i n e [ 3 ]
kd = l i n e [ 4 ]
chromosome = Chromosome(kp , ki , kd )
populat ion . append ( chromosome ) # p o p u l a t i o n i s cont inued from csv f i l e

else :
populat ion = g e n e r a t e i n i t i a l p o p u l a t i o n ( )

f i t n e s s v a l u e s = run s imu la t i on ( populat ion )
time . s l e e p (1 )

except Exception as e :
raise ValueError ( e )

for i in range (MAX RUNS − gene ra t i on ) :
print ( ” Generation {}” . format ( gene ra t i on ) )
populat ion = generate new popu lat ion ( f i t n e s s v a l u e s , populat ion , gene ra t i on )
f i t n e s s v a l u e s = run s imu la t i on ( populat ion , gene ra t i on )

max value = max( f i t n e s s v a l u e s )

print ( ”Maximum f i t n e s s o f gene ra t i on {} = {}” . format ( generat ion , max value ) )

# i f the p o p u l a t i o n sucks , DESTROY THE EARTH
# i f max value < FITNESS THRESHOLD:

# p r i n t (” Populat ion sucked so we ’ re s t a r t i n g wi th a f r e s h batch l o l ”)
# p o p u l a t i o n = g e n e r a t e i n i t i a l p o p u l a t i o n ( )

# g e n e r a t i o n = 1
# cont inue

gene ra t i on += 1
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import smbus
import time

class I2C ( object ) :

def i n i t ( s e l f ) :
s e l f . address = 0x04
s e l f . bus = smbus . SMBus(1 )
s e l f . va lue = 1

def getVoltage ( s e l f ) :
f l a g = 0
while f l a g == 0 :

try :
s e l f . writeNumber ( s e l f . va lue )
number = s e l f . readNumber ( )
temp = ’ ’ . j o i n ( str ( x ) for x in number )
vo l tage = f loat ( temp )/ 1000
f l a g = 1

except :
pass

return vo l tage

def writeNumber ( s e l f , va lue ) :
s e l f . bus . wr i t e by t e ( s e l f . address , va lue )

# bus . w r i t e b y t e d a t a ( address , 0 , v a l u e )
return −1

def readNumber ( s e l f ) :
#number = bus . r e a d b y t e ( address )
number = s e l f . bus . r e a d i 2 c b l o c k d a t a ( s e l f . address , 0 , 4)
#number = bus . r e a d b y t e d a t a ( address , 1)
return number
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import datet ime
import csv
import numpy as np

class PID( object ) :

def i n i t ( s e l f , pwm, i2c , v max , v min ) :
s e l f .pwm = pwm
s e l f . i 2 c = i 2 c
s e l f . v max = v max
s e l f . v min = v min

def f o r c e n o r m a l i s e r ( s e l f , l o ca t i on , G) :
’ ’ ’ As the a t t r a c t i v e f o r c e depends on the d i s t a n c e from the magnet , the f o r c e shou ld be normal ised to compensate .
The f o r c e o f the e l ec t romagne t i s dependent on the square o f the d i s t a n c e the maximum current shou ld be p r o p o r t i o n a l to the max d i s t a n c e
’ ’ ’

#check ing the reading f o r e r r o r s
i f l o c a t i o n < s e l f . v min − 0 . 5 :

raise ValueError ( l o ca t i on , s e l f . v min , ’ p o s i t i o n read as above the maximum value , probably problem with l i g h t source . ’ )
ope ra t i on range = s e l f . v max − s e l f . v min

#top l o c a t i o n i s v min , bottom l o c a t i o n i s v max ( because a h i g h e r p o s i t i o n means a l a r g e r shadow on the PV c e l l . )
norma l i s ed d i s t ance f r om top = ( l o c a t i o n − s e l f . v min ) / ope ra t i on range
i f norma l i s ed d i s t ance f r om top > 1 . 5 :

raise ValueError ( norma l i s ed d i s tance f rom top , ’NDFT i s g r e a t e r than 1 ’ )
e l i f norma l i s ed d i s t ance f r om top > 1 :

no rma l i s ed d i s t ance f r om top = 1
f o r c e = G ∗ norma l i s ed d i s t ance f r om top ∗∗ 2
s e l f .pwm.DC( f o r c e )

return f o r c e

def l o g g e r ( s e l f , t imestep , l o ca t i on , f o r c e ) :
l o c a t i o n = np . t ranspose ( l o c a t i o n )
myData = [ t imestep , l o ca t i on , f o r c e ]
date = datet ime . datet ime . now ( ) . s t r f t i m e ( ”%H−%M−%S−%B−%d−%Y” )
f i l ename = ’ . / l o g s /PID−Response− ’ + date +’ . csv ’
myFile = open( f i l ename , ’w ’ )
with myFile :

w r i t e r = csv . w r i t e r ( myFile )
w r i t e r . wr i terows (myData)

def p o s i t i o n ( s e l f , p o s i t i o n ) :
t a r g e t p o s i t i o n = p o s i t i o n
i = 0
e r r o r p a s t = 0
I n t e g r a l = 0
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l o c a t i o n = np . z e ro s (1000)
G = 0
p e a k l i m i t = 100
f o r c e = np . z e r o s (1000)
while i < 1000 :

l o c a t i o n [ i ] = s e l f . i 2 c . getVoltage ( )
e r r o r = ( l o c a t i o n [ i ] − t a r g e t p o s i t i o n )/ t a r g e t p o s i t i o n

KP = 600
KI = 0.001
KD = 10

V = e r r o r − e r r o r p a s t
D = KD ∗ V

P = e r r o r ∗ KP
i f G != p e a k l i m i t :

I n t e g r a l += e r r o r
I = I n t e g r a l ∗ KI

G = P + I + D

i f G > p e a k l i m i t :
G = p e a k l i m i t

e l i f G < 0 :
G = 0

f o r c e [ i ] = s e l f . f o r c e n o r m a l i s e r ( l o c a t i o n [ i ] , G)

i +=1
e r r o r = e r r o r p a s t

t imestep = np . t ranspose (np . l i n s p a c e (0 ,999 ,1000) )
s e l f . l o g g e r ( t imestep , l o ca t i on , f o r c e )
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Curve fitting for 3D magnetic simulations

%This MATLAB code i s w r i t t e n f o r f i t t i n g the curve o f curren t a g a i n s t the
%disp lacement o f the b a l l in order to f i n d the t r a n s f e r f u n c t i o n

%Elec t romagnet ic L e v i t a t i o n Group Project , Yidan Xue , 9 Oct 2018

clc ; clear a l l ;

f i l ename = ’ magnet ic s imulat ion 3D . x l sx ’ ;
shee t = 1 ;
xlRange = ’A2 : B10 ’ ;
data = x l s r e ad ( f i l ename , sheet , xlRange ) ;

p = polyf it ( data ( : , 1 ) , data ( : , 2 ) , 2 ) ;

x1 = linspace ( 1 0 , 5 0 ) ;
y1 = polyval (p , x1 ) ;

f igure
set ( gcf , ’ c o l o r ’ , ’w ’ ) ;
plot ( data ( : , 1 ) , data ( : , 2 ) , ’ bo ’ , ’ l i n ew id th ’ , 2 ) ; hold on
plot ( x1 , y1 , ’−r ’ , ’ l i n ew id th ’ , 2 ) ; hold on
legend ( ’ Test Points ’ , ’ F i t t i n g Curve ’ ) ;
t i t l e ( ’ Plot o f Current aga in s t Displacement ’ , ’ f o n t s i z e ’ , 1 4 ) ;
xlabel ( ’ Distance between the cent r e o f b a l l and e l e c t r omagne t i c (mm) ’ , ’ f o n t s i z e ’ , 1 4 ) ;
ylabel ( ’ Current (A) ’ , ’ f o n t s i z e ’ , 1 4 ) ;
grid on ;

% kc = z e r o s ( 1 , 9 ) ;
% kc ( : ) = 0.2783 .∗ data ( : ,1)∗10ˆ( −6) ./ data ( : , 2 ) ;
%
% q = p o l y f i t ( data ( : , 1 ) , kc ( : ) , 3 ) ;
%
% x2 = l i n s p a c e ( 1 0 , 5 0 ) ;
% y2 = p o l y v a l ( q , x1 ) ;
%
% f i g u r e
% p l o t ( data ( : , 1 ) , kc ( : ) , ’ bo ’ ) ; ho ld on
% p l o t ( x2 , y2 , ’− r ’ , ’ l i n e w i d t h ’ , 2 ) ; ho ld on
% l ege nd ( ’ Test Points ’ , ’ F i t t i n g Curve ’ ) ;
% t i t l e ( ’ P lo t o f Coi l Constant a g a i n s t Displacement ’ , ’ f o n t s i z e ’ , 1 4 ) ;
% x l a b e l ( ’ Distance between the c e n t r e o f b a l l and e l e c t r o m a g n e t i c (mm) ’ , ’ f o n t s i z e ’ , 1 4 ) ;
% y l a b e l ( ’ Coi l constant ’ , ’ f o n t s i z e ’ , 1 4 ) ;
% g r i d on ;
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