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Personal Statement

The PATBLC is a new project at The University of Edinburgh. It was supervised by Dr.
Aristides Kiprakis, who provided feedback and advice during weekly meetings. Notably, he
suggested the use of servo motors for the project, and helped troubleshoot a myRIO malfunction
by identifying servo motor noise as the culprit. He also supplied the camera for this project
from a previous project, and ordered components.

This project consulted and amalgamated various resources for inspiration, but to current knowl-
edge is a unique combination of the various optical, kinematic and vision elements within. The
aim was to design and manufacture a prototype that is robust and consistent using all available
resources.

The PATBLC device was designed and built from scratch. Most elements were 3D Printed at
the InnSpace Laboratory using a Prusa i3 Mk3. The bullseye was printed in the Sanderson
Mechanical Laboratory using red PLA. The assembly was conducted in the Fleeming Jenkin
Building as arranged by Dr. Kiprakis. The motor deconstruction and modification was also
conducted in TLA using the soldering equipment there. The electronics workshop on the ground
floor of TLA was also used for sourcing fasteners and for processing prints.

A Laser Safety Training course was attended at The University of Edinburgh on 28/02/2019,
for which a certificate was obtained.

The focus lenses for the system were not received, because they were not purchased from official
suppliers since those did not provide cost-effective options. Additionally, the second camera
was not received, preventing the second PATBLC from being built and hampering the testing
procedure, which instead relied on a human operator to hold the target with their 6 degree-of-
freedom arm, which does not reflect system conditions.

This project has imparted knowledge on optics, computer vision, kalman filtering, inverse kine-
matics, and LabVIEW programming. These topics were novel, and their practical implementa-
tion was rewarding. Additionally, the servo motors’ modification for position feedback granted
in-depth knowledge on their operation. Finally, moving from the desktop programming envi-
ronment to the myRIO was a an opportunity to learn memory management, which significantly
affected system performance.
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Summary

Pointing and Tracking Device for Bidirectional Laser Communication. Maurice Rahme - 23/04/2019.

This report records the design, manufacturing and testing for the Pointing and Tracking De-
vice for Bidirectional Laser Communication (PATBLC) MKI. This device was conceptualised
to supplement another ongoing project at The University of Edinburgh, the SquidROV. The
PATBLC should supplement the SquidROV by granting it wireless communication in its sub-
merged environment. The MKI prototype produced here, however, does not run underwater
due to budget and time limitations.

The system is comprised mostly of 3D printed components and is actuated by two Tower Pro
MG996R servo motors mounted perpendicularly to achieve a half-spherical workspace for the
End-Effector. Inverse Kinematics is implemented to control the restricted motors whereby
the End-Effector is flipped during one quarter-sphere of said workspace. The motors used here
produce too much torque for the PATBLC, but were the only cost-effective option. Their torque
is limited by using an ease-out function to dampen the motors’ response near their commanded
targets.

The End-Effector houses an optical breadboard carrying a laser, a dichroic mirror, a focus lens
and a receiver - although the focus lens was not received for this prototype. The system sending
the blue laser houses a short-pass dichroic mirror to pass its own beam out of the End-Effector
and to reflect its twin system’s beam onto its photodiode receiver for data reception. The
alternate system uses a long-pass dichroic mirror and a red beam. A green beam was originally
intended, but it was not possible to find one below the laser class III, which is unsuitable for
un-enclosed use at the university.

The computer vision algorithm uses elliptical shape detection coupled with a Kalman Filter for
skew and occlusion-resistant-tracking. The system is programmed in LabVIEW using a Queued
Message Handler design pattern to actuate Queued State Machines. Unfortunately, only one
camera was received, so only one system was built at this time.

The PATBLC performed well, with a link closing time of 0.23s/60◦ and 85% accuracy over 20
trials for a target at a 500mm distance. Accuracy over various distances could not be measured
due to noise limitations as well as the lack of a second system. Some of the future-work
recommendations include the implementation of an instrumentation amplifier for measurement
noise reduction, and the use of a more powerful controller to extend the target identification
range beyond the current 870mm.
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Notation

θn: the rotation of the nth frame about the zn−1 axis so that the xn and xn−1 axes match in a
Kinematic Diagram.

H0
3 : the Homogeneous Transformation Matrix for the PATBLC, relating frames 3 and 0.

cn: an abbreviation of cosθ n.

sn: an abbreviation of sinθ n.

φ1: the maximum allowable error angle of the outgoing beam for each PATBLC.

φ2: the maximum allowable error angle of the outgoing beam through the acrylic window.

δ: the beam deviation angle caused by passing through a flat medium.

φ3: the maximum allowable error angle of the outgoing beam through the focus lens.

σ: standard deviation.

x̄t: the predicted next-state vector.

xt−1: the current state vector.

εx: the Gaussian state error estimation, or process noise.

z̄t: the sensor prediction.

x̄t: the predicted state vector.

εz: the Gaussian sensor error or measurement noise

xEST : the Kalman Filter output.

(zt − z̄t): the Kalman correction term.

Kt: the Kalman Gain.

Σ̄t: the final covariance.

D: one pixel length.

E2a: the Equivalent Ellipse Major Axis.

E2b the Equivalent Ellipse Minor Axis.

φ: elevation in real-world coordinates.

θ: azimuth in real-world coordinates.

xt: horizontal position in pixels.
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yt: vertical position in pixels.

ẋt: horizontal velocity in pixels/second.

ẏt: vertical velocity in pixels/second.

σ2: variance.

µx: the data-set’s mean.

X: the sample in the variance calculation.

N : the data-set’s size in the variance calculation.
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Summary of Resources

The University of Edinburgh’s LabVIEW and MATLAB licenses were used for this project, in
addition to a SolidWorks license provided by an extracurricular group. The main workshop
used was the TLA Electronics Laboratory in the Fleeming Jenkin Building.

The Project InnSpace Laboratory was used for its 3D printing services. The Sanderson Me-
chanical Laboratory was used once to print the PATBLC’s bullseye using red PLA.
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1 Introduction

1.1 Motivation

This project is inspired by the Lincoln Laboratory (LL)’s recent field demonstration of narrow-
beam laser technology for undersea optical communication. The LL notes that lack of commu-
nication with undersea rovers increases likelihood of drift and loss of the rovers themselves [1].
Current protocols include acoustic modems and radio frequency (RF), which suffer from low
underwater data rates (100bytes/s) [2]. Conversely, the LL’s field test recorded data rates up
to 8.7Mb/s at a 7.8m distance with 0.25mW lasers. Extrapolated to higher-power lasers, this
data indicates link closing distances of up to 450m [1].

Based on the Optical Payload for Lasercomm Science (OPALS) experiment, this project aims
to design and manufacture two pointing, acquisition and tracking devices for bidirectional laser
communication (PATBLC) [3]. This project runs in parallel with Jing Zhang’s, which focuses
on optical data transfer. The combination of these projects will supplement Dr. Aristides
Kiprakis’ autonomous underwater rover, SquidROV, with wireless communication capabilities.
This should allow the SquidROV to explore environments beyond The University of Edinburgh’s
(UofE) WaveTank.

1.2 Project Scope

Considering the short timeline and £150 budget given to build two PATBLCs, it was decided
to forego submerged testing. The encapsulation of control, imaging and optical systems in a
waterproof package whilst maintaining dry-land performance is a project in its own right. That
said, this system is designed with waterproofing in mind, and is adaptable to submersion.

1.3 Report Structure

This report begins with a project management strategy in chapter 2. It includes a project
timeline in the form of a Gannt Chart along with a plan for managing setbacks.

Next, the literature review in chapter 3 presents an assessment of related works. Its main
discussions pertain to the topics of inverse kinematics, optics, computer vision, and control.

Chapter 4 covers mechanical and electronic design. Chapter 5 details the computer vision and
Kalman Filtering algorithms for this project both in theory by building upon the literature
review, and in practice within LabVIEW. Next, chapter 6 concludes the Inverse Kinematics
design for the system and introduces a motor easing algorithm for fine control. Chapter 7
describes the LabVIEW program.

Next, chapter 8 provides a performance analysis before drawing conclusions and recommenda-
tions for future work in chapter 9.

Finally, the references are provided and followed by the appendix.
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2 Project Management

2.1 Philosophy and Execution

An error-tolerant project plan was developed to account for setbacks. The Gannt Chart in
Appendix 1 is characterized by repeated tasks in red, acting as buffers to the project flow. The
chart is easily modified if a task’s difficulty is erroneously estimated. Sub-timelines split the
project into five sections: report writing, administration, optical and physical system, image
processing, control, and system integration. Each of these contains milestones, which, in addi-
tion to the percentage completion bars for each timeline, make challenges less daunting as their
scale with respect to the project as a whole is evident.

The manufacturing and programming tasks for the PATBLC deviated from the interim report’s
plan. The servo motors were not received on time, so emphasis was placed on the LabVIEW
program at earlier stages. Although this came with the drawback of identifying a mechanical
design flaw at a late stage, - the End Effector’s (EE) weight makes it ill-suited for fastening
using servo motor horns, and a planetary gear link is recommended for future iterations - it
was possible to spend more time programming to implement modular code with robust error-
handling and communication protocols.

More data acquisition should have been done for a better understanding of system performance,
but the decision to cease lab work on 12/04/2019 to focus on the report was respected.
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3 Literature Review

3.1 System Specifications and Feasibility

The narrow-beam optical communication method proposed by the LL deviates from the tradi-
tional approach of wide-beam data transfer to avoid pointing and tracking (PAT) challenges.
Therefore, the LL calls for an implementation of PAT to supplement data transfer [1]

The LL cites Petzold’s measurements of absorption and scattering coefficients to identify the
beam wavelengths with the lowest optical power attenuation due to submerged propagation [4].
They identify Green (517nm) wavelengths as ideal for the turbid harbor environment due to
higher chlorophyll concentrations, and Blue (470nm) wavelengths as optimal for open ocean
environments [1].

The field report’s PAT section outlines criteria for effective link closing. The system should be
robust to occlusion and intermittent outages from debris. This can be achieved with Kalman
Filtering [5]. Beam jitter should be controlled with a Proportional, Integral, Derivative (PID)
controller on each motorised degree of freedom (DOF) [1]. For the PATBLC, this is done using
servo motors.

The LL suggests that the beams be controlled by a galvanometer (ThorLabs GVS-112) costing
£2,500. Although these have 15µrad repeatability and 400µsec step response for a 0.02◦ step,
their cost is prohibitive [6]. As shown in section 3.3, the accuracy required for the PATBLC is
0.1◦ for a submerged closing link of 5m.
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3.2 Inverse Kinematics

Servo motors capped at 180◦ of rotation are used as joint actuators. Each acts as a revolute
joint oriented at 90◦ from the other as seen in figure 1, enabling a half-spherical workspace [7].

Figure 1: Isometric view of the CAD model in SolidWorks with the motors coloured in grey.

Inverse Kinematics (IK) can map the restricted joints to orientations that allow this half-
spherical workspace. The derivation in Appendix 2 is based on the Denavit-Hartenberg Method
for spherical wrists to find the system’s Homogeneous Transformation Matrix (HTM):

H0
3 =


c1c2c3 − s1s3 −c1c2s3 − s1c3 c1s2 c1s2d3
s1c2c3 + c1s3 −s1c2s3 + c1c3 s1s2 s1s2d3
−s2c3 s2s3 c2 c2d3

0 0 0 1

 (3.1)

The rotation part of the HTM, comprised of the first 3x3 elements, can be compared to the
Euler Angle Transformation (EAT) which describes the manipulator’s desired orientation. The
EAT is derived in Appendix 3. For the standard order of roll-pitch-yaw (X-Y-Z), it is:

RXY Z =

 czcy −szcx + czsysx szsx + czsx + czsycx
szcy czcx + szsysx −czsx + szsycx
−sy cysx cycx

 (3.2)

This yields a system of nine equations with three unknowns. The compared elements are
arbitrary. The simplest are: H33,H32 and H23 with R33, R32, and R23, giving the following
relationship for each joint relative to the desired orientation:
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θ1 = arcsin

(
R23

sin(θ2)

)
(3.3)

θ2 = arccos(R33) (3.4)

θ3 = arcsin

(
R32

sin(θ2)

)
(3.5)

θ3 corresponds to the revolute joint on the EE whose rotation is inconsequential. With this
relationship, the required joint angles can be computed for any given EAT orientation 3.2. The
calculated joint angles are plugged back into equation 3.1’s rotation component and compared
with equation 3.2 for confirmation at each iteration using LabVIEW’s robotics toolbox [8, 9].

3.3 Optical Design

The optical design’s goal was to allow the incoming and outgoing beams on each device to share
the same axis, permitting the IK in section 3.2. If these beams do not share an axis, the twin
devices will only be aligned for a quarter-sphere range of motion. The only non-optical solution
to this is to add a third revolute joint on the EE.

The OPALS’ optical scheme, shown in figure 2 served as a good starting point for the optical
design [3].

Figure 2: The OPALS Optical Scheme [3].
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The Off-Axis Parabolic Focus Lens (OAP) guides incoming beams to a dichroic beam splitter,
which passes the down-link beam (dotted line) to the photo-diode detector and camera through
a spectral filter to block unwanted signals. The up-link beam is reflected by the dichroic beam
splitter and is collimated by the OAP before being sent to the ground station. The OPALS’
design enables the camera to be placed within the optical setup as the satellite knows roughly
where to point thanks to its orbit and RF communication with the ground station [3].

A simpler design is proposed for the PATBLC:

Figure 3: The PATBLC Optical Scheme

Referring back to section 3.1, one device transmits a Blue (470nm) beam, and the other trans-
mits a Green (517nm) beam. In practice, it was only possible to acquire a green class III laser
at cost, which is unsuitable for un-enclosed actuation at UofE. A Red class II beam was used
instead. In figure 3, a short-pass dichroic beam splitter with a 500nm cut-off wavelength is
used to transmit the outgoing Blue beam and reflect the incoming Green beam onto the focus
lens and into photo-diode one focal length away. The alternate device uses a long-pass dichroic
beam splitter [10].

Ray tracing was done to specify system tolerances for a submerged environment. Tolerances are
looser in the dry-land prototype. Figure 4 shows the acrylic windows used for waterproofing.
The following analysis finds the maximum φ1 error angle of the outgoing beam for it to hit the
12.5mm target located at a maximum distance of 5000mm (the WaveTank depth) [11].
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Figure 4: Ray Tracing for offset tolerance investigation

nair nwater nacrylic nDM
1 1.333 1.49 1.55

Table 1: Refraction indices for relevant mediums [10,12]

The displacement from passing through a flat medium (d1 and d2) is neglected in this worst-case
analysis as it increases tolerance. Optical component distances are ignored since the 5000mm
travel is an over-estimate. The diagram treats the dichroic mirror for the outgoing laser as
perpendicular to the ray. This is done because the angle of incidence for passing beams is 45◦,
and this visualisation simplifies the analysis.

First, the maximum angle out of the acrylic window φ2 is computed using trigonometry:

φ2 = arctan

(
6.25

5000

)
= ±0.0716◦ (3.6)

The target diameter is 12.5mm, constrained by the beam splitter. Hence, the beam can deviate
by a maximum of 6.25mm.

To find the beam offset angle and the deviation angle caused by passing through a flat medium,
φ1 and δ, system of two equations 3.8 and 3.7 with two unknowns was solved iteratively in
MATLAB, starting with δ = 0 and looping until the increments in δ and φ1 became negligible
[12]. The code is provided in Appendix 4.

δ = φ1 − arcsin

(
nair
nwater

sin(φ1)

)
(3.7)

φ1 = φ2 + δ (3.8)

After 1000 iterations, the following was recorded: δ = ±4.1625e−4 rad, and hence φ1 = ±0.0017
rad = ±0.098◦ ≈ ±0.1◦.

To find the effect of this offset on the focus lens, φ3 is computed, noting that passing the second
acrylic window negates the effect of δ on φ2, and that the incidence angle on the dichroic mirror
is φ1. Equating the angle of incidence with the angle of reflection for the mirror, we can equate
φ3 to φ1, giving a final offset limit of 0.1◦ [12].
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3.4 Computer Vision

A digital image is a matrix composed of i columns and j rows where each element is a pixel.
A colour image is composed of three such matrices, denoting the Red, Blue, and Green planes
of the captured image. The resolution is defined as the number of pixels in a plane. Each pixel
can hold a value between 0 (black) and 255 (highest colour intensity) [13].

The tracking strategy for PATBLC was inspired by the OPALS experiment:

1. The brightest pixel in the FOV (640x480 pixels) is identified.

2. A centre-of-mass calculation is performed to find the bright spots centroid.

3. The background level is computed using a reduced 8x8 pixel subframe around the bright
spot.

4. The flux of the Data Number (proportional to the number of detected photons) is summed
in the 8x8 pixel subframe.

5. The background level is subtracted from the total flux to determine the beacon flux.

The beacon flux is thresholded to decide the transition open-loop to closed-loop tracking. This
renders the system vulnerable false detection if bright noise is detected. Furthermore, undersea
pointing accuracy has not been examined and the OPALS’ beam diverges considerably to hit
the target by the time it reaches the ground station, permitting lower accuracy [3].

The PATBLC’s camera separate from the optical scheme, so they don’t share the same frame,
and the beam itself cannot be used as a target. Instead, a physical target is used. Coordinate
transformation in the form of an elevation offset can be applied by computing the camera’s
HTM relative to the EE frame in the same manner outlined in section 5.2.5 [8,9].

To smooth the target for object detection, the algorithm employs Gaussian Blur, which uses a
Gaussian convolution kernel to eliminate image noise by blurring each pixel. A convolution is
an element-by-element multiplication of two matrices followed by summation [13].

To counter target occlusion, object tracking can be used to consider the object’s position in
the current frame and predict its position in the next frame. One such tracker is the Kalman
Filter (KF), a recursive algorithm that assigns a confidence level to various state predictions
and combines them to make a final estimate. The algorithm uses a state prediction equation
and a sensor prediction equation, which are weighted and combined to make a final next-state
estimate [5].

In the state prediction equation,

x̄t = Axt−1 +Bµt + εx (3.9)

x̄t is the predicted next-state vector, and A and B within the plant model describe the system’s
previous state and the external input respectively. µt is the control signal, which is zero since its
influence is unknown. xt−1 is the current state, and εx is the Gaussian state error estimation,
or process noise. The state vector is a model of position and velocity in both x and y directions
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in the camera’s FOV.

The state error, εx is written as the state covariance matrix 3.10 where the subscripts p and v
denote position and velocity respectively.

Ex =

[
σ2p σpσv
σvσp σ2v

]
(3.10)

The sensor prediction equation predicts the next-state sensor measurement extrapolated from
the next-state prediction:

z̄t = Cx̄t + εz (3.11)

z̄t is the sensor prediction, x̄t is the predicted state, and εz is the Gaussian sensor error or
measurement noise. C denotes a relationship between the predicted state and the sensor mea-
surement. It is set to 1 for correlated values and 0 otherwise.

The sensor error εz can be written as Ez = σ2z , the sensor covariance matrix. The KF requires
a matrix solution because there are multiple states being analysed (position and velocity). Ez
is calibrated based on expected sensor noise.

Finally, equations 3.9 and 3.11 are combined in the KF equation for the final state estimate,

xEST = x̄t +Kt(zt − z̄t) (3.12)

where xEST is the KF output, (zt − z̄t) is the correction term. If z̄t is equal to the sensor
prediction, zt, then only the state prediction is used in the final estimate, otherwise, it is
corrected by a factor of Kt of the correction term. Kt is the Kalman Gain, which decides the
importance of the correction term and is calculated using

Kt = Σ̄tC
T (CΣ̄tC

T + Ez)
−1 (3.13)

denoting its behaviour as a measurement of sensor importance, since an increase in Ez leads to
a reduction in Kt. Σ̄t is the predicted covariance of the whole system:

Σ̄t = AΣt−1A
T + Ex (3.14)

where Σt−1 is the prior-state covariance calculated in the last iteration.

The final covariance, used as the prior in the next algorithm iteration, is:

Σt = (I −KtC)Σ̄t (3.15)
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where I is the identity matrix. By multiplying Σ̄t with the factor (I −KtC), it is evident that
a more informative measurement, denoted by a higher Kt, has a lower system covariance. This
is because an informative measurement indicates a more accurate final state estimation, xEST .

Using these equations, the recursive KF algorithm is:

1. Prediction Step

(a) Predict the next state 3.9

(b) Predict the error covariance 3.14

2. Correction Step

(a) Calculate the Kalman Gain 3.13

(b) Correct the state estimate 3.9 using 3.12

(c) Compute the final system covariance 3.15 and feed it back into 3.14 as Σt−1 in step
1.b for the next algorithm iteration

The first iteration-state is distinguished in that its prior state, xt−1 is zero, and its prior state-
covariance Σt−1 is 1 as an assumption that the system contains noise [5].

3.5 Control

The pan-tilt system can be managed by controlling the motors responsible for azimuth and
elevation independently. As detailed in section 4.4, servo motors have built-in PI controllers
that ensure the commanded setpoint is reached with minimal overshoot and settling time. Here
are the proposed control stages:

1. Open-Loop Tracking: each PATBLC performs a pan-tilt sequence detailed in section 7.3
to cover the half-sphere workspace. Once the target is detected, closed-loop tracking
commences.

2. Closed-Loop-Tracking: the target’s pixel coordinates are fed to the KF algorithm to com-
pute an improved estimate before translating it into azimuth and elevation angles. subse-
quently, the servo motors in each device are actuated according to their IK descriptions
to reach the correct attitude.
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4 Design & Manufacturing

4.1 Mechanical Components

The mechanical design serves to:

1. Reduce physical ’wobble’ from mounts and linkages.

2. Lower the Centre of Gravity (CoG) for a smaller impact on the SquidROV’s stability.

3. Ensure a long lifespan by placing the PCB and myRIO inside the SquidROV and away
from moving parts.

All components were 3D printed using black PLA except the bullseye, which was printed in red
for identification. A calibration tool was printed to estimate tolerances. It prints in one piece
with a series of cylinders housed in casings of varying tightness ranging from 0.05mm to 0.5mm.
The cylinders spin if the tolerance is loose. It was found that a 0.25mm tolerance results in a
manual press fit, although this was not always true for the smaller optical components.

Figure 5: Calibration tool used to measure printing tolerance

The system has a static CoG of 42mm away from the centre horizontally. Since the EE’s length
was dictated by the length of the blue laser, an easing algorithm controls the motors’ speed and
torque to prevent toppling. The base’s shape ensures that the edge cases from section 6.1 are
better supported. The limited print-bed size meant that a triangular shape could be printed to
fulfil this criterion but a circular one could not as it would protrude from the bed. The assembly
instructions are provided in Appendix 8.
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Figure 6: CAD Model with CoG

Figure 7: Triangular Base

4.1.1 End Effector & Camera Mount

These are the largest contributors to the PATBLC’s CoG since the camera in its metal casing
weighs 230 grams. The End Effector (EE) with its fasteners and optical breadboard brings the
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total weight to 413 grams.

A compromise was made between size and user-friendliness, since assembly and dis-assembly
were performed regularly.

1. An extruded cut on the EE base allows the servo mounted arm to press-fit into the EE
and be secured with an M5 bolt. A 12mm hole provides an egress point for the laser and
receiver terminals.

Figure 8: EE Base.

2. The EE contains two M3 slots to pass bolts to secure the optical breadboard from the
outside.

Figure 9: Slots to secure the breadboard to the EE.
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3. A cavity with an octagonal slot secures the camera mount without fasteners.

Figure 10: Slot to secure the camera to the EE.

4. On the EE’s face, two 5mm deep holes with 5mm diameters house knurled inserts to fasten
the bullseye.

Figure 11: Knurled insert and camera mount extrusions.
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Figure 12: EE with bullseye.

The camera mount in figure 11 is secured to its metal casing via threaded holes. The mount
has an octagonal extrusion without a 0.25mm tolerance relative to the EE slot. Its middle is
cut out so that it bends to fit into the EE slot and click into place.

4.1.2 Base & Motor Mount

A common edge case where the EE flips and exerts high torques is from 0◦ to below 360◦ in
azimuth, where one of the base’s vertices provides additional support. An extruded frame houses
M2 holes for the first motor’s screws and a 10mm filleted slot on one side for its terminals. The
fillet begins at 5mm from the screw entry point to expose enough threading material while
limiting bending to the motor terminals during assembly.
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Figure 13: The base.

The motor mount aligns the second motor’s shaft to first’s centre of rotation, validating the IK
in section 3.2. A cavity in the mount allows the first motor’s horn to attach snugly.

Figure 14: The motor mount.

Wobble was still experienced due to the EE’s weight. For future iterations, this paper recom-
mends the use of a 3D-printed planetary gear system instead of a servo horn attachment, which
is coupled to the system’s CoG. Unfortunately, by the time this flaw was noticed, it was too late
to redesign and manufacture the part; the wobble was controlled using the easing algorithm.
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Figure 15: Example of a 3D-printed planetary gear system.

4.1.3 Servo Motor Arm

This link includes a cavity for its motor horn as well. Another cavity on the side of the arm
creates the same 8.5mm thickness as the motor mount to allow the same bolts to be used in
both components whilst maintaining the arm’s thickness for load-bearing. Part of the horn is
cut to avoid clashing mechanically with the first motor.

Figure 16: The servo arm exterior cavity.

The arm’s face is filleted to its shoulder with a 5mm radius to minimize stress concentration.
The cylindrical extrusion interfacing the EE originates on the centre of the first motor to validate
the IK.
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Figure 17: The servo arm fillet and interior cavity.

4.2 Optical Breadboard & Mounts

The optical breadboard houses knurled inserts. Two of these face the EE’s inner surface, and
the remaining six interface with the optical mounts.

Figure 18: The breadboard with knurled inserts.

The post base houses two M3 holes to fasten to the breadboard along with an octagonal slot to
fit the mounts’ octagonal posts. An octagon was chosen as this permits mounting at 45◦in case
the breadboard design changes for size-reduction. Since 3D prints are not uniform, an M3 nut
and slot housing allows a bolt to pass and secure the the octagonal posts.
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Figure 19: The post base.

The laser and focus lens mounts have octagonal extrusions to fit the post bases. The mount
houses inner rings and fastener slots to secure focus lenses and diodes of varying radii externally
if necessary.

Figure 20: The red laser mounted with a small inner-ring and external fasteners.
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Both parts of the dichroic mirror mount contain a small cavity of the lens’ thickness for fitting,
as well as protrusions on the side with M3 nut and bolt slots. The small cavity prevents skewed
lens fastening and grants tactile feedback, generating an audible click during correct fitting.

Figure 21: A dichroic mirror in its mount.

The receiver mounts to the back of a focus lens mount using extruded bridges with fastening
slots. It houses the photo-diode receiver using epoxy glue.

Figure 22: The receiver mount assembly.

20



Figure 23: The full system.

4.3 Electronic Components

The myRIO interfaces on channel B are the following:

1. Pin 3, the ground pin, links to the external power supply used to power the lasers and
motors.

2. Pins 27 and 29 are PWM outputs.

3. Pins 5, 7 and 9 are analogue inputs. Pins 5 and 7 measure the motor potentiometer
voltages, and pin 9 measures the receiver signal.

4. Pin 11 is the digital output that controls the N-Channel MOSFET to actuate the laser.

Since the myRIO can only supply 100mA per connector, the motors, requiring up to 2.5A each,
and laser are connected to an external supply [14,15]. The servos’ DC motors are noisy and
interfere with the position feedback measurements as these are drawn from a potentiometer
instead of an encoder, which is a more expensive but more reliable sensor. To attenuate noise,
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the breadboard houses four 100µF shunt capacitors on the power rails [15].

The laser diode’s positive terminal connects to the power supply and its negative terminal con-
nects to the MOSFET drain. The MOFSET source connects to ground, and a pulldown resistor
links its gate to ground to prevent actuation due to parasitic gate capacitance, which is instead
discharged through the resistor. Upon actuating the laser, the motor position measurements
swung significantly, up to ±5◦. This is likely due to the MOSFET’s 290pF parasitic capaticance
[16]. Four 100nF shunt capacitors on each position feedback terminal reduce this swing to ±2◦.
It can be minimised using a cleaner power supply.

Figure 24: The Laser and MOSFET connection diagram

Figure 25: The breadboard connections.

4.4 Servo Motor Operation & Deconstruction for Position Feedback

The PATBLC uses two servo motors instead of stepper motors. Servo motors are faster and
more accurate than stepper motors despite their reduced holding torque, which, for the Tower
Pro MG996Rs, at 9.4kg/cm, is not an issue [17].

The servo motors’ PI closed-loop feedback control is achieved by reading the motor’s position
using its on-board potentiometer which returns a voltage relating to the output shaft’s position.
Servo motors lack the ability to rotate up to 360◦, but can re-adjust if their position slips due
to high loading, whereas a stepper motor gains an offset for the current power cycle [18].
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Servo Motors provide the user three terminals: the positive, negative, and Pulse-Width-Modulation
(PWM) inputs. The PWM signal consists of minimum and maximum pulse widths at frequency.
At 50Hz, a 1ms pulse width rotates the shaft to -90◦ , and a 2ms pulse width rotates it to 90 ◦.
Hence, the motor can rotate up to 180 ◦ and its neutral position is at a 1.5ms. These numbers
are not rigid; the typical shaft rotation range is approximately 200◦, and the duty cycle values
for each motor are found experimentally. The calibration procedure is given in Appendix 5 and
is used to find the relationship between the PWM signal and shaft command. This map is given
in Appendix 7 for each motor [18].

The command for each motor depends on the target coordinates relative to the EE added to the
current motor position. The only way to estimate motor positions was to assume they are equal
to the commanded position. This assumption is flawed because the commanded position is not
achieved instantly, and the target’s position relative to the EE changes in real-time, resulting
in erratic behaviour.

The solution is to modify the motors by adding an additional terminal to the potentiometer’s
position feedback node, which can be mapped to a shaft position. The deconstruction and
modification is outlined in Appendix 6.

Figure 26: The added white terminal is used to measure position.

Similarly to the Duty Cycle calibration, the returned voltage from the potentiometer is mapped
to an output shaft angle at 12-bit resolution, or a 1.2mV step size for a 5V signal. According
to the map, 1.2mV corresponds to 1.14E-4◦. The potentiometer terminal connects to pin 5 on
the myRIO, and the voltage map is calculated using y = mx+ b.

Motor 1 example:

y = Motor Position◦, x = Measured Voltage,

m = 180−0
180V OLTS−0V OLTS

and b = −m ∗ 0.0952148.

The voltage maps are given in Appendix 7.
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5 Computer Vision & Kalman Filtering

5.1 Camera Capture Settings

The camera was calibrated within NI MAX to ensure the red bullseye’s visibility in all lighting
conditions. The settings are shown in figure 27. The chosen resolution was 320x240 pixels at
30 frames-per-second (FPS). This was done to minimise computing time as the myRIO has a
limited RAM of 512Mb [14].

Figure 27: Camera settings.

The vision algorithm extracts the RGB colourspace within LabVIEW. LabVIEW’s ’ImaqCreate’
function, which creates space for image memory, works natively in RGB. An HSV extraction
requires conversion from RGB, and colour-image manipulation is three times as costly as binary.
The finished algorithm was found to run at 30 FPS using RGB-extraction and at 15FPS using
HSV.

The camera in figure 7 is fitted upside-down for its USB 2.0 cable to exit the case. This was
remedied using the ’Imaq Symmetry’ function in figure 37 [19].
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5.2 Computer Vision Methods

5.2.1 Gaussian Convolution Kernel

As mentioned in section 3.4, a Gaussian convolution eliminates image noise and blurs particle
edges. This linear low-pass filter replaces each pixel by a weighted sum of its neighbours
determined by the convolution kernel. The convolution smooths particle edges before the shape
detection step, which is useful when processing 320x240 images [19].

The Gaussian kernel is:

 a d c
b x b
c d a

 (5.1)

where x > 1 and the other elements are positive integers dependent on the kernel size. Each
pixel becomes a weighted average of its neighbours, noting that higher-coefficient neighbours
carry more weight. Since x > 1, its original value has a greater effect on its weighted sum than
for the Smoothing kernel, where x has a value of 0 or 1. The Gaussian kernel creates a more
subtle smoothing effect which helps conserve shapes [19].

The minimum kernel size is 3x3. A larger kernel increases smoothing alongside processing time.
The 3x3 kernel showed negligible reduction in performance whilst maximising processing speed
[19].

5.2.2 Heywood Circularity Particle Filter

The Heywood Circularity Particle Filter (HCPF) deletes non-circular particles grouped using
pixel connectivity. After RGB-thresholding, the image elements have intensity values of 0 or
1, and elements with value 1 can be grouped. This is done using connectivity modes 4 or 8 in
LabVIEW. Connectivity mode 4 groups adjacent pixels into particles whereas mode 8 groups
both adjacent and corner pixels of intensity value 1 [19].

In a 2D image, each pixel P0 has eight neighbours:

 P8 P1 P2

P7 P0 P3

P6 P5 P4

 (5.2)

where P0 is closer to P1, P3, P5, P7 than to P2, P4, P6, P8. It is distance D (one pixel length)
away from the former, and

√
2D from the latter. Connectivity mode 4 thus groups pixels of

distance D from P0 whereas connectivity mode 8 groups pixels of up to distance
√

2D [19].

The HCPF assesses particle circularity using:
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HCPF =
P

2
√
πA

(5.3)

where the perimeter P in pixels is divided by the the circumference using area, A. The closer a
particle is to a disk, the closer its HCPF is to 1. LabVIEW lets the user select a threshold for
rejecting particles. Experimentally, to account for skew, it was set from 0 to 1.5 [19].

The filter also deletes particles that contact the image border. After unwanted particles are
deleted, those remaining have their holes filled using a closing function, which is a dilation
followed by an erosion that smooths particle boundaries. Since dilation and erosion are mor-
phological complements, the particle’s expansion due to dilation is reversed with erosion, but
the filled holes are not removed [19].

Figure 28: Opening function [19].

5.2.3 Small Element Elimination

Finally, an opening function is used to eliminate remnant small particles. It is an erosion
followed by a dilation where the eroded borders are restored and smoothed using dilation, but
the rejected particles remain lost. Two iterations are enough to maintain performance and
speed. Any more eliminates the bullseye if it is too far [19].
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Figure 29: Closing function result [19].

5.2.4 Shape Detection

Finally, LabVIEW’s Elliptical Shape Detection algorithm is used to find the bullsey’s centre
instead of using the OPALS’ brightness-concentration method. Hence, should part of the target
(up to 50%) be occluded or skewed, or should there be additional particles uncleared by image
processing, the bullseye has a higher likelihood of being identified.
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(a) Ideal conditions.

(b) Skewed in dark lighting. (c) Occluded in dark lighting.

Figure 30: Various identification scenarios.

The method employed by LabVIEW is curve extraction. National Instruments defines a curve
as ’a set of edge points that are connected to form a continuous contour’. Curves are extracted
in three steps [19]:

1. Finding Curve Seed Points: a curve seed cannot belong to an existing curve. Additionally,
it must have a contrast value greater than the edge threshold, a function relating the
examined pixel’s intensity value with that of its neighbours.

Pi,j is the pixel intensity value P at coordinates (i, j). The edge threshold is:√
(Pi−1,j − Pi+1,j)2 + (Pi,j−1 − Pi,j +1)2 (5.4)

and can vary between 0 and 360 for an 8-bit image. The image processing steps should
ensure high scores.

The number of examined pixels is limited by a user-defined step size. A higher value
results in a faster algorithm that can miss smaller curves, so it must be smaller than the
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smallest expected curve to work well. In LabVIEW, the smallest identifiable elliptical
radius is 3 pixels. Hence, a step size of 6 was chosen.

The algorithm first examines pixel (0, 0) for a seed point. If the above criteria are met,
the curve begins tracing. Otherwise, the next pixel in the row is evaluated until the end
of the row is reached. If by the end of the row, no seed is found, the algorithm skips ’step
size’ rows and repeats the process until the last row is reached. Then, the same process
is repeated through the columns.

2. Curve Tracing: The curve is traced from the seed point by adding neighbouring pixels
with the highest edge threshold - higher than the limit - to the curve. When no more pixels
can be added in one direction, the process is reiterated in another. When the tracing is
completed, a new seed point is sought out.

3. Refinement: After all curves are traced, the ones with ends in close proximity considering
50% occlusion are combined. Open curves are closed if the result meets the minimum
curve size of 3 pixels. Otherwise, they are deleted.

Figure 31: Curve Extraction [19].

The closed curve is compared to an elliptical template with a minimum radius size of 3 pixels
and a maximum of 160 for the major radius and 120 for the minor radius; half the 320x240
resolution. The template is defined by:

Area(A) = πab (5.5)

and
Perimeter(P ) = π

√
2(a2 + b2) (5.6)

where a and b are half the total length of the major and minor axes of ellipses with the same
area and perimeter as a particle. a = E2a

2 and b = E2b
2 , where E2a and E2b are the Equivalent

Ellipse Major and Minor Axes [19].
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Figure 32: Elliptical template.

Rearranging for E2a and E2b:

E2a =

√
P 2

2π2
+

2A

π
+

√
P 2

2π2
− 2A

π
(5.7)

E2b =

√
P 2

2π2
+

2A

π
−
√
P 2

2π2
− 2A

π
(5.8)

The matching process is comprised of three steps:

1. Feature Correspondence Matching: High-level geometric features are identified from the
extracted curves using polygon approximations. These are ordered by feature type, -
i.e circle - feature representation strength, and template representation strength. Then,
potential matches from the image are classed based on these criteria. Their scale, rotation
and position is noted.

2. Template Model Matching: The template is superimposed onto the potential match for
confirmation. If the match is confirmed, additional features such as scale and rotation are
compared with the template for a more detailed match.

3. Match Refinement: Further matching is carried out for precise positional, scalar and
angular information. Curves extracted from the inspected image are compared to the
template’s curves to ensure accurate matching before returning a match score, which is
an average of the scores for each matched feature.

The user-defined match score threshold ranges from 0 to 1000, with 1000 indicating a perfect
match. A higher threshold means fewer potential matches are carried to steps 2 and 3 above,
reducing processing time, but increasing the likelihood of missing the bullseye. The target was
placed in non-ideal conditions, and a match score threshold of 800 was derived. The bullseye
should be the highest-scoring match, so the match coordinates are zero-indexed [19].

Remnant particles can classify as false matches and increase processing time. Multi-step func-
tions such as HCPF hence increased the processing rate from 8FPS to 15FPS. By converting
from HSV to RGB extraction, this rate was further increased to 30FPS.
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Figure 33: Resultant image after processing and detection.

5.2.5 Pixel to Spherical Coordinates

The camera used here is an ELP-USBFHD01M-L180 and has a spherical ’fisheye’ lens with
a 180◦ FOV. The captured image is distorted, and real-world coordinates cannot be mapped
without manipulation.

According to Dr. Paul Bourke, assuming two identical spherical lens halves; a good assumption
considering the glass-spun manufacturing [20].

Figure 34: Real-world coordinates [21].
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Figure 35: Image coordinates [21].

Here, r = 1, φ is elevation and θ is azimuth in real-world coordinates and i and j are normalised
pixel distances from the centre of the fisheye image. The translation from pixel to spherical
coordinates is as follows [21]:

φ = arctan(

√
p2x + p2z
py

) (5.9)

where py is found using a calibration map for radius-size-to-distance in Appendix 7.

Additionally,
θ = (i/j) (5.10)

and

px = cosθ ∗ sin(
πi

2cosθ
) (5.11)

and

pz = sinθ ∗ sin(
πi

2cosθ
) (5.12)

These can be used to find the bullseye’s spherical coordinates relative to the camera, which are
added to the camera’ elevation offset to find the result relative to the EE [21].

The camera’s offset from the EE is calculated using φOFFSET = ( yx) where y is the vertical
distance from the centre of the EE to the centre of the camera, and x is the horizontal distance
from the edge of the lens to the system’s centre of rotation.
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5.3 Image Processing in LabVIEW

The ’RGB Process’ VI conducts image processing and shape detection. The constants and
controls passed to each function - performed in connectivity mode 8 - correspond to the values
from section 5.2.

Figure 36: The ’RGB Process’ VI.

The ’Image Dst’ inputs reference memory where the destination image after each processing step
is stored. The memory type reflects the post-processed image format. Memory is established on
first-run using the ’ImaqCreate’ function to reduce processing time by avoiding a re-initialisation
in every loop as seen in figure 58.

The ’Pixel to Spherical Coordinates’ VI converts the KF pixel coordinates to azimuth and ele-
vation using the equations in section 5.2.5. The YEST coordinate is divided by 1.35 to normalise
the vertical distortion discrepancy identified in the 320x240 format. This was calibrated by lay-
ing a circle parallel to the camera. Additionally, the azimuth coordinate is negated if elevation
is above 90◦. Azimuth is also limited to 360 degree using a modulo operation.
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Figure 37: The ’Pixel to Spherical Coordinates’ VI.

5.4 Kalman Filter

5.4.1 Sate-Space Modeling

A state-space model is crucial to the implementation of a KF. Here, the equation of motion of a
free particle is used. A state-space model is modular and allows element separation to simplify
multiple-input-multiple-output (MIMO) systems. In the future, the model should be upgraded
to MIMO by implementing the SquidROV’s equations of motion (EOM) as well as those of
the hub-mounted PATBLC. During the interim meeting, Professor Kamenev highlighted the
challenges posed by the latter PATBLC bobbing in the water. Measurements from the myRIO’s
internal measurement unit (IMU) can be subsumed into a single model using sensor fusion with
the SquidROV’s EOM to tackle the issue [22].

Since the target’s coordinates are x and y pixels, its next-step motion in each direction can be
described using:

xt = xt−1 + ẋt−1t+
1

2
at2 (5.13)

ẋt = ẋt−1 + at (5.14)

The same equations is applied to vertical motion, where t is the discrete KF’s time step of 34ms,
equal to the task loop time in section 7.3.

A combined state-space model is constructed for equation (3.9). It has a 4-dimensional state
vector for horizontal and vertical position and velocity [23]:
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
x
y
ẋ
ẏ

 =


1 0 t 0
0 1 0 t
0 0 1 0
0 0 0 1


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x
y
ẋ
ẏ

+


t2

2
t2

2
t
t

µ+ εx (5.15)

where the process error is

εx =


t4

4 0 t3

2 0

0 t4

4 0 t3

2
t3

2 0 t2 0

0 t3

2 0 t2

 (5.16)

and is derived from the system’s input by multiplying each element [23]:

x y ẋ ẏ


x

y

ẋ

ẏ

(5.17)

The sensor model’s state-matrix equivalent to equation 3.11, is described noting that the camera
only measures position:

z̄t =

[
1 0 0 0
0 1 0 0

]
x̄t + εz (5.18)

where the sensor error is

εz =

[
σx 0
0 σy

]
(5.19)

and σx and σy are equal to the variance of a set of sensor measurements [5]. Referring the
USB-provided sheet ’Sensor Noise.xlsx’, it was found as 8.95E-5 using the variance equation:

σ2 =
Σ(X − µx)2

N
(5.20)

where σ2 is variance, X is the sample, µx is the data-set’s mean, and N is its size. Equations
5.15 to 5.19 are subsequently implemented in the Kalman Algorithm outlined in section 3.4.
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5.4.2 Kalman Filtering in LabVIEW

In the ’Discrete Kalman Filter’ block, the user configures the system state-space model, includ-
ing process and sensor noise, along with the intial system estimate, which is the centre of the
camera’s FOV.

(a) State-Space Model. (b) Noise Matrices.

(c) Initial state estimate (d) Initial state co-variance matrix

Figure 38: Discrete Kalman Filter parameters in LabVIEW

If no object is detected, the shape detection code returns (0,0). This operation skews the KF’s
estimations, so a feedback node in the ’Overlay Circle’ VI in figure 60 inputs the last-estimated
state back to the KF block in this case, allowing occlusion-resistant motion estimation.
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6 Kinematics & Control

6.1 Inverse Kinematics in LabVIEW

The process of verifying the IK’s system of 9 equations with gradient-descent for joint limitations
using LabVIEW’s robotics toolbox was costly alongside computer vision, causing significant lag.
As the system only has 2DOF, it was possible to map IK heuristically to derive a quadrant-based
relationship [8,9].

The ’Quadrant Selector’ VI accepts azimuth and elevation inputs between 0◦-360◦ and 0◦-180◦

from the ’Pixel to Spherical Coordinates’ VI. At the (0◦, 0◦) position, should the target be
to the right of the EE, then the system should point to somewhere below 360◦in azimuth.
For elevation, allowing a range up to 180◦provides an alternate route for reaching the second
quadrant.

The quadrant selector evaluates azimuth and elevation to determine which of the four quadrants
the system should operate in. ’Select’ functions are fed booleans determined by ’AND’ operators
with range conditions. If a set of azimuth and elevation values is identified in-range, an integer
related to a quadrant is passed. Otherwise, a value of zero is passed. All four ’Select’ outputs
are summed and passed out of the VI to the case selector that maps the joints.

Figure 39: ’Quarant Selector’ VI.

In the case selector, each quadrant commands the motors as follows:

1. Quadrant 1:1
Azimuth <= 180◦, Elevation <= 90◦

Azimuth and elevation are passed directly to motors 1 and 2 respectively.
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Figure 40: Quadrant 1:1.

2. Quadrant: 1:2
Azimuth >180◦, Elevation >90◦

An attempt to return to quadrant 1:1 is made by subtracting 180◦ from azimuth and
subtracting elevation from 180◦ and passing the modified values to motors 1 and 2.

Figure 41: Quadrant 1:2.

3. Quadrant 2:1
Azimuth >180◦, Elevation <= 90◦

The EE and camera flip to continue tracking the target. this is done by subtracting 180◦

from azimuth and subtracting elevation from 180◦.
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Figure 42: Quadrant 2:1.

4. Quadrant 2:2
Azimuth <= 180◦, Elevation >90◦

Commands are passed directly to the motors since the ’Pixel to Spherical Coordinates’ VI
negates azimuth if elevation exceeds 90◦to ensure the correct path. The value manipulation
is to optionally display coordinates in a user-friendly format.

Figure 43: Quadrant 2:2.

Quadrant 2 can be entered from quadrant 1 through azimuth exceeding 180◦(2:1) or through
elevation exceeding 180◦(2:2), and vice-versa.

6.2 Easing Algorithm

A motor easing algorithm was employed to avoid toppling the system during edge cases as the
purchased motors produce a minimum torque of 9.4kg/cm. They were the only motors available
which supplied enough torque at cost.
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The easing algorithm used here, is an ’Ease-Out’ algorithm [24]. It reduces the motor’s positional
rate of change the closer it is to its target. The change-magnitude is determined by a filter in
the following equation based on the time-dependent Quadratic Ease-Out function:

Setpoint = Current ∗ (1− Filter) + (Target ∗ Filter) (6.1)

This low pass filter adaptation uses current versus target position instead since it iteration-
based. The filter can be set between 1 (no filter) and 0.001. Experimentally, 0.4 was chosen
[25].

Within LabVIEW, this is implemented using the identical ’Smooth Pan’ and ’Smooth Tilt’ VIs
pictured below.

Figure 44: ’Smooth’ VI.
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7 LabVIEW

7.1 Graphical User Interface

The Graphical User Interface (GUI) on the PC Host shown below.

Figure 45: GUI.
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Figure 46: The Manual control tab explained in Appendix 9.

7.1.1 Consumer/Producer to Command Parser

The ’PC Host’ VI uses a Producer-Consumer architecture [26]. The Producer Loop houses
an event-case-structure for each front panel button followed by a guard clause that priority-
enqueues the ’Shutdown’ state using ’Enqueue at Opposite End’ in case of an error. Queue
operations are detailed in section 7.2. In the Consumer Loop, the guard clause dequeues the
Producer command if there is no error, and passes the ’Shutdown’ state otherwise to stop all task
loops. The ’Shutdown’ state is also enqueued if the ’ESC’ button is pressed. In the Consumer,
the ’Shutdown’ state triggers a virtual press of the ’ESC’ stop button to stop the Producer Loop
and sets the stop boolean for its task loop to true. When both loops are stopped, the Queue is
destroyed and a ’Simple Error Handler’ function ensues.

The ’Connect’ event in the Producer enqueues the ’connect’ state to the Consumer to call the
’Create Network Stream Reader Endpoint’ function with a 500ms timeout. If there is no error,
meaning that a connection has been made using the myRIO IP address, the ’Connect’ button is
grayed-out and disabled and the Tab housing the other buttons is enabled using invoke nodes.
If the timeout is exceeded, an error is injected into the error cluster [26].
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Figure 47: PC Host ’Connect’ state.

Similarly, the ’Disconnect’ event triggers the ’disconnect’ state in the Consumer to send the
’Disconnect’ to the RT Target by flushing the stream to ensure passage. Then, the ’Destroy
Stream Endpoint’ function ends communication. Finally, the GUI button Tab is grayed-out
and disabled, and the ’Connect’ button is enabled [26].

Figure 48: PC Host ’Disconnect’ state.

The ’Consumer’s ’Send’ state has a driving Producer event for each front panel button. If a
button is pressed after connecting to the myRIO, the ’Send:Message’ string is enqueued. For
example, pressing the ’Reset’ button enqueues ’Send:SysMgr/Intialize’. As explained in section
7.2, the ’:’ delimeter splits the string into the ’Send’ Consumer state and the ’SysMgr/Initialize’
argument. The ’Send’ case sends this argument to the RT Target using ’Write Single Element
to Stream’ [26].

Within ’RT Main’, the Command Parser kernel moves from its ’Initialize’ state to the ’wait for
connection’ state where it calls ’Create Network Stream Reader Endpoint’. If a connection is

43



established, the true case-selector state is engaged, saving the network stream reader endpoint
to the data highway and enabling the ’PC Host Connected’ boolean to enqueue the ’connected’
state. If the timeout is exceeded, the flase case is selected, enqueuing the ’wait for connection’
state again and clearing the generated error to avoid the shutdown sequence in 7.4.2 [26].

Figure 49: RT ’wait for connection’ state.

In the ’connected’ state, messages from the PC Host are read using ’Read Single Element From
Stream’. If the timeout is exceeded, no message has been received and the error is cleared
before the ’connected’ state is enqueued. Otherwise, the received message is checked to see if
it is ’Disconnect’, in which case the ’disconnect’ state is enqueued. Otherwise, the ’connected’
state is enqueued and the received message is passed using the ’Enqueue Single Message’ VI
discussed later in this section. The ’SysMgr/Initialize’ message is split into the ’SysMgr’ queue
and the ’Initialize’ message using the ’/’ delimeter [26].
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Figure 50: RT ’connected’ state.

In the ’disconnect’ state, the ’Destroy Stream Endpoint’ function is called, the reader endpoint
is emptied, and the ’PC Host Connected’ boolean is set to false before enqueueing the ’wait for
connection’ state [26].
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Figure 51: RT ’disconnected’ state.

7.2 Queued Message Handler

This LabVIEW program runs on the Queued-Message-Handler (QMH) design pattern. The
QMH houses multiple task loops running synchronously in parallel at 34ms/iteration with queue-
based intercommunication.
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Figure 52: Queue functions.

The System Manager loop, a Queued State Machine (QSM), manages every loop in the QMH
except the Command Parser and Error Handler. The ’Obtain Queue’ function initializes the
queue, and the queue’s name ’SysMgr’ is fed as the data type. This eliminates most wires from
the program. The only by-wire queue references are linked to the Error Handler in section 7.4
[26].

Figure 53: The System Manager loop.

The ’Enqueue Element’ function passes ’Initialize’ state-message on first-run to the ’kernel’ VI
inside the loop. First, the message passes through the ’state&args’ VI which splits it into two
strings using the ’:’ delimiter. This is useful for passing sub-cases as is done in the ’Send’ state
in section 7.1.1. This VI is used in every task loop, so it is set to ’pre-allocated clone re-entrant’
for each instance to run independently [26].
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Figure 54: The ’state & args’ VI.

The Video and Vision Loops self-enqueue states. This is done using the ’Enqueue Element’
function through the internal queue reference wire. The System Manager Loop cannot commu-
nicate with other loops using its own queue. To control other loops, it calls the ’Enqueue Single
Message’ VI which uses the ’/’ delimeter to separate the queue’s name and carried message
in the format ’name/message’. Coupled with the ’state & args’ VI, the result is ’name/mes-
sage:argument’. It uses the queue’s name to obtain the queue and enqueues its message and
argument using ’Enqueue at Opposite End’ for priority before destroying the VI’s queue refer-
ence to clear data. To enqueue messages to multiple loops, the ’Enqueue Multiple Messages’
VI passes an array of ’name/message:argument’ strings into a for loop which calls the ’En-
queue Single Message’ VI for each element. These two VIs are also set to ’pre-allocated clone
re-entrant’ [26].

Figure 55: Self-enqueueing states.

Figure 56: The ’Enqueue Single Element’ VI.
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Figure 57: The ’Enqueue Multiple Elements’ VI.

Queues are also used to pass time-critical data between loops, such as image frames from the
’Video Loop’ to the ’Vision Loop’, and pixel coordinates from the ’Vision Loop’ to the ’Motion
Loop’. These queues are separate from the QMH loop but are implemented in the same way
[26].

7.3 Queued State Machines & Kernel VIs

The QSM loops use shift registers to provide persistent data for each iteration. This data is
passed via variable clusters bundled into strict type definitions known as the data highway [26].

7.3.1 Video Loop

The video loop self-enqueues the ’run’ state post-initialization. The frame capture and storage
functions are performed inside the loop but outside the kernel as the time needed to wait for
state-message and error identification using the Guard Caluse VI in section 7.4.1 causes lag.
The kernel enables the ’Shutdown’ state which stops the loop.

This loop initializes the QMH queue, and the image-frame transmission queue labeled ’Video
Feed’ with the ’Image’ data type. On first-run, the ’Open Camera’ function with a reference
to ’cam0’ is called before the ’Configure Grab’ function, referencing the frame capture settings
from NI MAX. The ’video session’ is passed through both functions into the while loop. Finally,
the ’ImaqCreate’ function is called to create memory for the captured image.
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Figure 58: The Video loop.

Inside the loop, ’Grab’ sends each captured frame to the ’Video Feed’ queue. Simultaneously,
the capture rate is measured. A ’Tick Count’ measures the milliseconds taken to complete the
loop. Using a feedback node, the previous loop time is subtracted from this value. The result
is inverted and multiplied by 1000 to output the capture rate in FPS. This is also done within
the Vision Loop.

7.3.2 Vision Loop

The Vision Loop calls a set of ’ImaqCreate’ functions as explained in section 5.3. The ’Video
Feed Queue’ is wired into the loop, and an element is dequeued at each iteration into ’Vision’,
which houses the ’RGB Process’ VI. The queue is flushed post-image-processing to ensure that
the next enqueued element is the most recent frame; the order of operations is ensured using the
error cluster. Finally, the ’matches’ output from ’Vision’ increments the ’Lost Count’ indicator
if it is equal to zero, and resets it to zero otherwise.

50



Figure 59: The Vision loop.

The ’RGB Process’ VI passes the target’s x and y coordinates to the ’Overlay Circle’ VI, which
implements the KF from section 5.4.2 and passes the target’s modified pixel coordinates and
radius to an ’Overlay Line’ and ’Overlay Oval’ function. The former receives a ’start point’
input of (168, 120), while the ’end point’ input is the KF output: (XEST , YEST ). The latter
receives a ’bouding rectangle’ input of (XEST +Radius), (YEST +Radius), (XEST −Radius),
(YEST −Radius). Together, they draw a line from the centre of the fisheye to the target, along
with a circle corresponding to its minor radius like in figure 33. The choice to use the minor
radius is explained in section 7.3.4.

Figure 60: The ’Overlay Circle’ VI.

51



Finally, the KF and raw camera outputs, along with the target’s minor radius are passed out
of the loop and enqueued into the ’PixelCoord’ queue which is wired to the Motion loop.

7.3.3 Motion Loop

On first-run, ’RT Main’ calls ’Open RIO AI’ for three analogue input channels, two of which are
passed to the Motion Loop to record potentiometer voltages from each motor. The ’PixelCoord’
queue is wired into the Motion Loop to dequeue the target’s pixel coordinates and radius. After
each iteration, this queue is flushed to ensure current data.

Figure 61: The Motion loop.

This loop operates in three states: ’Scanning’, ’Tracking’ and ’Manual’. Referencing the PC
Host GUI, the first two states fall under the ’Automatic’ button, while the latter falls under
’Manual’.

The loop’s ’Initialize’ state establishes PWM terminals on Pins 27 and 29 by calling ’myRIO
PWM Open’. An initial PWM value mapped to 0◦ for each motor is passed at 50Hz using ’Write
Duty Cycle and Frequency’ through the ’Smooth Pan’ and ’Smooth Tilt’ VIs in their ’Initialize’
to set up the easing algorithm from section 6.2. Additionally, the data highway variables are
set to zero or false.

In the ’Manual’ state, azimuth and elevation setpoints provided by the PC Host’s mouse coor-
dinates as described in Appendix 9 are passed to a case selector which determines oint angles
based on section 6.1. These are converted into duty cycles using the calibration map from Ap-
pendix 7. Finally, each motor is actuated trhough its easing algorithm VI. The ’Manual’ state
self-enqueues until a priority command is received from the System Manager Loop.

52



Figure 62: The ’Manual’ state.

The ’Scanning’ state sets the joint angles as follows:

1. Scanning:1
On first-run, the false case is engaged, setting the elevation motor to 30◦ and incrementing
the azimuth motor by 1◦ each iteration until the next exceeds 180◦, changing the ’Next
Scan’ boolean to true. This works by sending the azimuth command to ’Servo SP1’
through the loop’s shift register and reading it in the next iteration.

Figure 63: The False case.
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2. Scanning:2 The true case is engaged, setting the elevation motor to 150◦ and decrementing
the azimuth motor by 1◦ each iteration until the next moves below 0◦, changing the ’Next
Scan’ boolean to false.

Figure 64: The True case.

This state is enqueued by the ’automatic’ state within the System Manager Loop. the automatic
state sends the the ’run’ state to the Laser and Data Loops, and the ’Scanning’ state to the
Motion Loop while simultaneously enqueueing itself into the ’scan’ state. Here, the ’Matches’
variable is monitored. If it is equal to zero, the above-mentioned states are re-enqueued, oth-
erwise, ’Tracking’ is enqueued to the Motion Loop, and ’track’ is self-enqueued to the System
Manager Loop.

Within the System Manager Loop’s ’track’ state, the ’Lost Count’ variable is monitored. If
it exceeds 100, meaning that the target has been lost for 3.4 seconds, the Scanning operation
states are enqueued. Otherwise, the Tracking operation states are re-enqueued.

In the Motion ’Tracking’ state, the camera-referenced azimuth and elevation values from the
’Pixel to Spherical Coordinates’ VI are passed to the Laser Loop as ’Object Azimuth’ and
’Object Elevation’ via Local Variables before summing the motor positions to them and com-
pleting the system’s proprioception. Elevation is limited between -5◦ and 180◦ to avoid ground
collisions as shown in figure 65.

An issue was identified at edge cases where the PATBLC must flip the EE to access the half-
sphere’s second quadrant. During this swing, if the target’s elevation is below 70◦, the bullseye
is erroneously picked up in the subsequent frame, resulting in a motor update that locks the
system into back-and forth motion. The following solution was implemented:

1. Edge Case False:
The operating quadrant is identified as described in 6.1, and a feedback node is used to
determine if the quadrant has changed. If this is true, elevation is below 70◦, and the
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’Servo ON’ boolean is set to true from the GUI, then the ’Edge Case’ boolean is set to
true for the next iteration. Otherwise, it is set to false and the same operation occurs in
the next iteration.

Adjacently, the motors are commanded as described in the ’Manual’ state. This only
happens if the ’Servo ON’ boolean is set to true, otherwise, the (0◦,0◦) position is set.
The motor commands are also passed to the shift register through the ’Servo SP1’ and
’Servo SP2’ indicators.

Figure 65: ’Edge Case’ is False.

2. Edge Case True:
Here, ’Servo SP1’ and ’Servo SP2’ from the flase scenario are passed as motor commands
and compared to current motor positions. If these are within ±3◦ of each other, the ’Edge
Case’ boolean is set to false and normal operation ensues. Otherwise, it is set to true
again, and the last commanded position is passed at every iteration until the proximity
condition is met.
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Figure 66: ’Edge Case’ is True.

During the Motion ’Shutdown’ state, the command to return to the (0◦,0◦) position is given
before closing the PWM reference using ’PWM Close’.

7.3.4 Laser Loop

The Laser Loop calculates whether the EE is pointing within the bullseye through the ’Prox-
imity’ VI and actuates the laser using digital output pin 11 if the ’Laser ON?’ control is true.

The ’Proximity’ VI receives ’Object Azimuth’, ’Object Elevation’, and ’Target Radius’. First,
the radius is converted into azimuth and elevation similarly to the ’Pixel to Spherical Coordi-
nates’ VI method. Then, it is fed as the limits for two ’In Range and Coerce’ functions with
’Object Azimuth’ and ’Object Elevation’ inputs.

Figure 67: The ’Proximity’ VI.
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The ’Centered’ VI determines whether the EE is centered on the bullseye as above, except the
’In Range and Coerce’ limits are 1 and -1. The ’Pixel to Spherical Coordinates’ VI outputs
’Object Elevation’ and ’Object Azimuth’ values of 0◦ if the EE and bullseye are centered.

Figure 68: The ’Centred’ VI.

7.3.5 Data Loop

The data loop reads the receiver using analogue input pin 9 and sends it to the PC Host
alongside the ’Centered’ boolean. The target’s pixel radius is converted into a mm distance
using the map in Appendix 7. A ’Centered + Rx’ boolean is true when both the ’Centered’
boolean is true and the receive signal is greater than 2V.

All data transmission between the RT Target and PC Host is done using Network Publishes
Shared Variables (NPSV). These run on the Shared Variable Engine and are sparsely used due
to computational cost.

The NPSVs from the RT to the PC Host are charted using the fourth loop in the ’PC Main’ VI.
It logs the data in the GUI’s charts and uses a local variable of the ’ESC’ stop button to end
the loop. On stop, the data in each chart is exported to Excel using invoke nodes. On first-run,
the charts are cleared by injecting a blank into their ’History’ property node.
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7.4 Error Handling

7.4.1 Guard Clause VI

The Guard clause VI is the same as in section 7.2.

Figure 69: Error-less ’Guard Clause’ VI state.

Messages are dequeued by the VI and returned as strings. If an error is passed, it is injected
into the error cluster, and the message queue is ignored [26].

Figure 70: ’Guard Clause’ VI in error state.

7.4.2 Shutdown Sequence

The Error Handler Loop initiates the shutdown sequence upon receipt of an error. It extracts all
queue names through the merged queue reference input and priority-enqueues the ’Shutdown’
message to each. It passes the error to a ’Simple Error Handler’ before stopping the loop [26].
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(a) Error Handler.

(b) Error Handler ’run’ state.

Figure 71: The Error Handler loop

The system can be shut down remotely using the PC Host ’Shutdown’ command which injects
an error through the System Manager Loop. There, each kernel VI stops its loop. Then, queues
are destroyed, myRIO I/O are closed, and image memory is cleared.
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8 Performance

8.1 Quantitative Analysis

The first test places the target 60◦ in azimuth, 500mm away from the EE to evaluate the time
to close the beam-link. This was repeated 20 times by placing the target and verifying azimuth
on the front panel before engaging the ’Servo ON’ boolean. A summary of the data provided
via USB (’Time.xlsx’) is given below, where ’NA’ indicates a no-link-close condition:

Figure 72: Test 1 summmary.

The second test evaluates system’s accuracy at various distances by achieving a close-range
uplink and moving the target away. Unless the second system is built, it isn’t possible to
conduct a representative test as increasing the receiver wire length increases circuit noise and
decreases pointing accuracy. Furthermore, since the distance map from section 5.2.5 was found
to be insufficient, distance measurements could not be trusted. The raw data is provided via
USB (’Distance.xlsx’) but is not discussed for the reliability reasons above.
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8.2 Qualitative Analysis & Discussion

1. The motor position measurements error of ±2◦ caused unnecessary re-centring.

2. The maximum target identification distance was 870mm, limited by pixel resolution.

3. The spherical lens is non-linear, so a linear map of radius to distance was insufficient.

4. The 3D printed optical mounts are expected to generate pointing error.

5. The system’s wobble was dampened using the easing algorithm to avoid degrading system
performance. However, a mechanical solution should be used to reduce easing for quicker
motion.

On average, the system took 0.23s to centre on a target 60◦ away, just 21.0526% below the
motor’s speed (0.19s/60◦ at 4.8V) because of motor easing, the EE weight and process lag.
In three trials, the system failed to close the link but still pointed the laser at the bullseye,
indicating 85% accuracy due to the linear lens map and optical mount tolerances. The popu-
lation’s standard deviation is 27.423ms, which is smaller than the 34ms loop time. This data
is incomplete as the second (unfinished) PATBLC must be implemented to evaluate the whole
system.
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9 Debriefing

9.1 Future Work

Recommendations for future work assume the PATBLC should be improved before adapting it
to a submerged environment:

1. Correct the EE wobble by replace the horn attachments with a planetary gear system
from section 4.1.

2. Minimise motor measurement error using a cleaner power supply and an encoder. Alter-
natively, an instrumentation amplifier is a low-cost alternative.

3. Fit the focus lenses and the second camera to complete the system.

4. Map the spherical lens using a 4th order polynomial for target-size versus distance [20].

5. Use a cRIO or RoboRIO to exploit the camera’s full 1920x1080 resolution, theoretically
increasing target identification distance by a factor of 27.

6. Modify the KF state-space model to include the SquidROV’s and Hub’s EOM.

7. Design a waterproof motor case since the feedback modification ruins pre-existing water-
tightness.

9.2 Final Thoughts

Compared to the galvanometer suggested by the LL in section 3, the PATBLC behaves poorly
with a motor sensor accuracy of ±2◦, and a maximum pointing distance of 870mm due to a
320x240 resolution and inadequate spherical lens mapping. However, considering that each
system costs £75 and was developed in 12 weeks, these figures are more respectable. Notably,
the vision system behaved consistently in all lighting conditions at 30FPS.

The KF successfully offset the camera’s measurement noise while providing occlusion resistance,
and the IK was implemented reliably at low computational cost, resulting in robust behaviour
at edge cases. The easing algorithm prevented the base from toppling, and minimised the EE’s
wobble to close beam-links quickly, at 0.23s/60◦ on average, just 21.0526% below rated motor
speed. In a 20-trial sample, the PATBLC closed links at 85% accuracy, and seldom broke them
unless a noise-spike caused erroneous re-centring.

The second system could not be built without the second camera. The focus lenses were also
not received, and are expected to improve accuracy.

The modular LabVIEW code written for this project makes it possible to subsume the SquidROV
code into one project. The recommended future work in section 9.1 is based on current system
observations. However, underwater vision will likely be the biggest submersion challenge.
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Appendix

1 - Gantt Chart

13 20 27 3 10 17 24 3 10 17 24 31 7 14 21
1/19 2/19 3/19 4/19

BEng Project start end 0h 100%

  Master 14/01/19 23/04/19 0h 100%
     Report 14/01/19 23/04/19 0h 100%
         Background Reading 14/01 16/01 0 100%
         Literature Review 17/01 07/02 0 100%
         Interim Report 08/02 13/02 0 100%
         MILESTONE - Interim Report 14/02 14/02 0 100%
        Final Report - 90% 30/03/19 23/04/19 0h 100%
            Write Up: KF Detail 30/03 30/03 0 100%
            Write Up: Control Detail 31/03 31/03 0 100%
            Write Up: Img Processing Detail 02/04 03/04 0 100%
            Write Up: QSM/QMH/LV 04/04 05/04 0 100%
            Write Up: Sph 2D Fish 06/04 07/04 0 100%
            Draft 1 01/04 07/04 0 100%
            Draft 2 08/04 14/04 0 100%
            Final 15/04 21/04 0 100%
            Presentation 22/04 23/04 0 100%
         THESIS COMPLETE 23/04 23/04 0 100%
     Project Planning & Admin 14/01/19 28/02/19 0h 100%
         Create Gannt Chart 14/01 14/01 0 100%
         Workbook Setup 14/01 15/01 0 100%
         Install LabVIEW 14/01 15/01 0 100%
         Resources Form 14/01 18/01 0 100%
         Meet with Profs/Techs 14/01 22/01 0 100%
         Acquire Sponsorship 21/01 29/01 0 100%
         Send BoM to Dr. Kiprakis 25/01 28/01 0 100%
         Risk Assessment Form 11/02 13/02 0 100%
         Laser Safety Training 28/02 28/02 0 100%
     Optics & Build 17/01/19 22/03/19 0h 100%
         Optics Design 17/01 22/01 0 100%
         Ray Tracing / Optics Calc (Verificat... 03/02 10/02 0 100%
         Optics Line-Up 04/03 05/03 0 100%
         Optics Testing 06/03 12/03 0 100%
         Add Receiver Mount 17/03 19/03 0 100%
         Transceiver Topology 23/01 23/01 0 100%
         Servo Motor Topology 23/01 23/01 0 100%
         Waterproofing? 23/01 24/01 0 100%
         CAD - Waterproof 25/01 05/02 0 100%
         CAD - non-waterproof 06/02 10/02 0 100%
         Circuit & MyRio Design 11/02 13/02 0 100%
         Circuit Build & Test 26/02 28/02 0 100%
         Build & Test 19/02 22/02 0 100%
         CAD - Redesign 23/02 25/02 0 100%
         Build - Redesign 26/02 28/02 0 100%
         CAD - Servo Mounts 18/03 19/03 0 100%
         Build - Servo Mounts 20/03 22/03 0 100%
         MILESTONE - Build & Optics 22/03 22/03 0 100%
     Image Processing 19/01/19 05/04/19 0h 100%
         LabVIEW or OpenCV? 19/01 21/01 0 100%
         Image Processing Basics 22/01 25/01 0 100%
         Vision Strategy 28/01 31/01 0 100%
         Image Processing Algorithm 01/02 10/02 0 100%
         Write Code 28/02 11/03 0 100%
         Spherical-2D Mapping 11/03 12/03 0 100%
         KF Implementation 11/03 14/03 0 100%
         Test Code 12/03 16/03 0 100%
         Redesign Code 19/03 31/03 0 100%
         Retest Code 01/04 04/04 0 100%
         MILESTONE - CV 05/04 05/04 0 100%
     Control 19/01/19 05/04/19 0h 100%
         Two-Stage Control 19/01 20/01 0 100%
         Feedback Control 21/01 23/01 0 100%
         State Space Modeling 24/01 27/01 0 100%
         Inverse Kinematics 28/01 11/02 0 100%
         Design Controller 07/03 13/03 0 100%
         Add Servo Easing Algorithm 14/03 17/03 0 100%
         Test Controller 18/03 19/03 0 100%
         Redesign Controller 20/03 31/03 0 100%
         Retest Controller 01/04 04/04 0 100%
         MILESTONE - Control 05/04 05/04 0 100%
     System Integration 09/02/19 12/04/19 0h 100%
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2 - Homogeneous Transformation Matrix

The Inverse Kinematics (IK) of a system is a relationship between joint angles and the End-
Effector (EE) (the part of the manipulator that interacts with the workspace) position in space
[8,9].

A good way of finding this system’s IK is to treat it as a 3DOF spherical wrist with three
revolute joints if the laser transceiver is treated as the third DOF. This conserves the systems
integrity as the incoming and outgoing beams travel the same line of action, and a rotation of
the EE has no consequence on the systems pointing angle.

The first step in finding the IK is to identify the Homogeneous Transformation Matrix (HTM),
a 4x4 matrix defining rotation and translation between subsequent frames in a Kinematic Di-
agram (KD), where the rotation matrix is described by the first 3x3 elements of the HTM,
and the displacement vector by the first three row elements of the fourth column. These are
called the rotation and displacement parts of the HTM. Rotation matrices are commutative,
but displacement vectors are not. The last row of the HTM is

[
0 0 0 1

]
to allow com-

mutative matrix multiplication between frames by turning the HTM into a square matrix and
circumventing the displacement vector’s non-commutative property to reach a full description
of the EE frame relative to the base frame in this manner:

H0
3 = H0

1H
1
2H

2
3 (9.1)

The HTM describes the subscript 3 (EE) frame relative to the superscript 0 (base) frame [8,9].

There are two methods for finding the HTM: the Denavit-Hartenberg Method (DHM), and
the Product of Exponentials (PoE) method. Dr. Kevin Lynch argues that while the DHM
constitutes fewer parameters, its computational benefit is offset by lower EE pointing accuracy
in high-DOF open-chain manipulators due to its vulnerability to alignment errors. Given the
low-DOFs of the PATBLC and the high computational power required due to object tracking
through computer vision, the DHM was chosen for the interim report. The PoE method may
be implemented in a later trial if accuracy issues present themselves while using the DHM [8].

The DHM method is as follows. The first step is to draw the Kinematic Diagram (KD) and to
assign frames according to the following DHM rules [8,9]:

1. The z-axis is the axis of rotation of a revolute joint, or the direction of motion of a
prismatic joint. The end-effector frame follows the last joint frame.

2. The x-axis must be perpendicular to the z-axis of its own frame and to the z-axis of the
frame before it.

3. All frames must follow the right-hand-rule, whereby the thumb points in the z-direction,
the palm points in the y-direction, and the fingers point in the x-direction. That is to say,
the axis represented diagonally on the page must always be drawn from left to right with
a positive slope.

4. Each x-axis must intersect the z-axis of the previous frame in three-dimensional space.
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True to these rules, here is the PATBLC’s KD:

Figure 73: Kinematic Diagram for the PATBLC Spherical Wrist interpretation [9].

The second step is to fill the DHM parameter table. Below is the PATBLC’s populated table:

Linkn θn αn rn dn
1 θ1 −90◦ 0 0
2 θ2 90◦ 0 0
3 θ3 0◦ 0 d3

Table 2: The first column, θn, indicates the rotation of the nth frame about the zn−1 axis so
that the xn and xn−1 axes match. The second column, αn, indicates the rotation of the n− 1th

frame about the xn axis so that zn−1 and zn match. rn indicates the distance between the
centres of frames n and n − 1 in the xn direction. Finally, dn indicates the distance between
the centres of frames n and n− 1 in the zn−1 direction [9].

The third step is to insert the table’s values into equation 9.2 relating the nth frame to the
n − 1th frame for each row of the DH parameter table, with cos and sin replaced by c and s
respectively for clarity:

Hn−1
n =


cθn −sθncαn sθnsαn rncθn
sθn cθncαn −cθnsαn rnsθn
0 sαn cαn dn
0 0 0 1

 (9.2)
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This gives

H0
1 =


c1 0 −s1 0
s1 0 c1 0
0 −1 0 0
0 0 0 1

 (9.3)

H1
2 =


c2 0 s2 0
s2 0 −c2 0
0 −1 0 0
0 0 0 1

 (9.4)

H2
3 =


c3 −s3 0 0
s3 c3 0 0
0 0 1 d3
0 0 0 1

 (9.5)

Note that cosθ n and sinθ n are abbreviated as cn and sn.

Finally, the HTM can be computed by plugging equations 9.3, 9.4, and 9.5 into 9.1 to give:

H0
3 =


c1c2c3 − s1s3 −c1c2s3 − s1c3 c1s2 c1s2d3
s1c2c3 + c1s3 −s1c2s3 + c1c3 s1s2 s1s2d3
−s2c3 s2s3 c2 c2d3

0 0 0 1

 (9.6)
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3 - Euler Angle Transformation

Euler Angle Transformations depend on the chosen order of operations. For this system, the
standard order of roll, then pitch, then yaw was chosen to describe rotational motion. These
are right-multiplied as follows:

RXY Z = Rz(z)Ry(y)Rx(x) (9.7)

where

Rz(z) =

 cz −sz 0
sz cz 0
0 0 1

 (9.8)

Ry(y) =

 cy 0 sy
0 1 0
−sy 0 cy

 (9.9)

Rx(x) =

 1 0 0
0 cx −sx
0 sx cx

 (9.10)

to yield

RXY Z =

 czcy −szcx + czsysx szsx + czsx + czsycx
szcy czcx + szsysx −czsx + szsycx
−sy cysx cycx

 (9.11)

Note that cosθ n and sinθ n are abbreviated as cn and sn.
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4 - MATLAB Code

%Optics .m

loop = 100000000;

t2 = 0 . 0 012 5 ;
d1=0;

f o r repeat = 1 : loop
t1 = t2 + d1 ;
d1 = t1−as in ( ( 1/1 . 333 )∗ s i n ( t1 ) ) ;

end
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5 - Servo Motor Calibration

1. Follow the assembly instruction for each revolute joint as shown in Appendix 8.

2. Press-fit the provided splined motor horn onto the output shaft, then run the VI and
control the ’Duty Cycle’ input at 50Hz until the shaft is at its minimum position. Then,
remove it and re-fit it just behind the 0◦ line. This will be accounted for later, and is done
because the output shaft’s splines do not usually align parallel to the side of the motor.

3. Using small increments, increase the value of ’Duty Cycle’ input until the servo horn
is parallel to the sides of the motor. The Duty Cycle value for this position should be
recorded.

4. By changing the VI control again, rotate the servo horn to roughly 180◦ from the previous
point, then, using small increments, ensure that the horn is again parallel to the sides of
the motor and record the value.

5. Finally, using these values, a linear relationship between Duty Cycle and shaft position
can be found using the following:

y = mx+ b (9.12)

Where y = Duty Cycle and x = Desired Position◦.

m = 0.115648−0.0236265
180−0 and b = 0.0236265 for the azimuth motor. The remaining maps

are given in Appendix 7.
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6 - Servo Motor Position Feedback Modification

Below are the steps for the position feedback modification done to the servo motors. Note that
this will likely void the warranty.

1. Remove the screws from the bottom of the servo casing. Be sure to hold the top of the
casing securely once this is done to prevent the gear assembly from falling out.

2. Carefully extract the exposed integrated circuit (IC) from the casing. In this model,
the white wire on the underside of the IC corresponds to the potentiometer’s position
feedback node, which returns a voltage corresponding to the shaft’s position. Note that
every motor’s IC is different, and the node for this model was found experimentally.

Figure 74: The motor IC with its white potentiometer terminal.

3. Secure the motor casing and IC using some blue putty and carefully remove the yellow
shielding paste around the position feedback note and solder an additional white wire onto
the white position feedback node. Be sure not to remove too much of the yellow paste as
it protects the IC from shorts and also gives it mechanical strength.
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Figure 75: The additional soldered feedback terminal.

4. Using a carving knife or small box-cutter, cut an additional cavity into the motor’s cover
to allow the newly soldered wire to exit the motor casing.

5. Finally, carefully re-insert the IC into its original position and pass the newly soldered
wire out of the new cavity, and place the original terminal grommet adjacent to it before
re-fitting the motor’s cover and re-inserting and tightening its screws. Then, wrap some
heat shrink around all the terminals and secure them together using a heat gun on the
lowest setting.

74



7 - Maps

MapName Map

Servo1PWM PWM = (5.1123E − 4)x◦ + 0.0236265

Servo2PWM PWM = (5.1123E − 4)x◦ + 0.0236265

Servo1V OLTAGE
◦ = 63.862V − 6.08055

Servo2V OLTAGE
◦ = 65.028V − 10.5065

PixelRadiustoDistance ◦ = −0.47Radius(px) + 11.88

Table 3: Maps
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8 - Assembly Instructions

The assembly instructions can be broken up into the following steps for each systems:

1. Revolute One - Base (1x), Motor (1x), Motor Wood Screws (4x).

(a) Fit the rubber and brass inserts onto the servo motor.

(b) Fit the servo motor onto the base by first pushing the outgoing terminals into the
base’s vertical slot at an angle, then pushing the motor down after straightening it.

(c) Fit each of the four wood screws onto the motor and drive them into the base using
a phillips-head screwdriver.

2. Revolute Two - Motor Mount (1x), Motor Horn (2x), Motor (1x), Motor Arm (1x), M2
bolts (6x), M2 Washers (6x), M2 Nuts (6x), Motor Wood Screws (4x), Motor Spline Bolt
(2x).

(a) Secure the motor horn onto the motor mount using three of the M2 bolts, washers
and nuts.

(b) Place the above assembly onto the first motor (assembled in part 1) and follow the
calibration instructions in section 4.4. Then, secure it using one of the motor spline
bolts.

(c) Secure the second servo motor to the motor mount using four wood screws as in part
1.

(d) Cut the second motor horn in the middle of its its second hole on one side, then
secure it to the motor arm using the remaining three M2 bolts, washers and nuts. If
any part of the horn still protrudes from the arm, trim it.

(e) Secure the motor arm assembly onto the second motor, following the calibration
instructions in section 4.4 and subsequently securing it using the last motor spline
bolt.

3. End-Effector - End Effector Cylinder (1x), Camera Mount (1x) Optical Breadboard (1x),
Post Base (3x), Focus Lens Mount (2x), Focus Lens Mount Inner Ring (1x), Mirror Mount
(1x), Receiver Mount (1x), Epoxy Resin (1 Tube), Cotton Gloves, Bullseye (1x), Dichroic
Mirror (1x), Laser Diode (1x), Focus Lens (1x), Receiver (1x), Disposable Mixing Utensil
(1x) 6mm M3 Bolts (16x), 10mm M3 Bolts (5x), M3 Nuts (13x), 5mmx5mm Knurled
Inserts (10x), Camera Mount M1 Screws (2x), M5 Bolt (1x), M5 Nut(1x).

(a) Using a pair of snips, hold one of the knurled inserts onto one of the optical bread-
board’s holes (there are six on the flat surface, and two on the curved surface) and
heat it using a solding iron. Once the insert is hot, it will begin to melt into the
hole, and the snips will prevent it from going any further. Release the snips and
gently push the insert into the hole using the soldering iron, ensuring that it is flush
with the breadboard’s surface. Repeat this seven more times until all the holes are
filled. Additionally, repeat this step twice at the front of the EE cylinder. Be sure
to wear safety goggles during this step!
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(b) Glue the receiver onto the receiver mount from the back, ensuring that the photodiode
is centered. To do this, mix some epoxy using a disposable mixing utensil (scrap
plastic/metal/wood) and apply it without making direct contact with the substance.
Be sure to wear safety goggles during this step!

(c) Grab one of the focus lens mounts and press-fit the laser diode into it. If the laser
is small, there should be a small ring that can be fitted first to accomodate its size.
If either the ring or laser is loose, fit three of the M3 nuts into the mount, and use
three of the 6mm M3 bolts to fasten the assembly evenly. Repeat this for the focus
lens, ensuring that the inner ring is fastened first, and that the receiver mount is
attached to the lens mount’s slots before any bolts are secured if necessary. The nuts
are not needed here since the friction from the tightly-toleranced receiver mount’s
holes will grant the bolts a gripping surface. In fact, it may be necessary to open the
hole slightly using a carving knife.

(d) Using a pair of cotton gloves, set aside of the dichroic mirrors. If the red or green
laser was fastened to the laser mount, use the high-pass mirror, otherwise, if the
blue laser was fitted, use the low-pass mirror. Then, fit four of the M3 nuts into the
bottom and top portions of the mirror mount. Then, fit two of the 10mm M3 bolts
onto the top of the mount, driving one all the way done, and the other halfway as
pictured below.

Figure 76: Fitting the top of the mirror mount.

Then, through the fully-driven bolt, drive the top mount into the bottom mount,
leaving just enough space to squeeze the mirror in.
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Figure 77: Slotting the mirror into the assembly.

Then, fit the mirror until a ’click’ sound is heard, and drive the other bolt all the
way down until both bolts are securely fastened.

Figure 78: The final dichroic mirror assembly.

(e) Secure each of the post bases to the breadboard using six of the 6mm M3 bolts
through the knurled inserts. Then, fit each of the mounts into a post base. If the fit
is not tight, push an M3 nut into the post base and drive one of the 10mm M3 bolts
through to ensure a secure fit between the mounts and the post base.
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Figure 79: Isometric view of the optical breadboard.

(f) Slide the finished breadboard into the EE cylinder while pulling the diode and re-
ceiver’s terminals out of the large hole in the back, and secure it to the bottom of
the cylinder using two of the 6mm M3 bolts. Secure the rearmost bolt first, making
sure to push the breadboard into the cylinder using a finger while doing so.

Figure 80: Fitting the breadboard to the EE.

(g) Fasten the camera mount to its metal case using the two provided camera screws.
Then, push the mount’s octagonal extrusion into the hole in the EE cylinder until a
’click’ is heard. To unfasten it, the extrusion can be pinched to release the camera
and push it back out.
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4. Finally, secure the EE to the motor arm using the M5 nut and bolt, and secure the bullseye
to the EE using the two remaining 6mm M3 bolts.

The final result should look like figure 23.

9 - Manual Mouse Control

This VI is described in the appendix because it is non-essential to the project. It was developed
as a means of verifying the IK implementation described in section 6.1. It was left in the final
project as it provides additional functionality to the system.

The ’Manual’ tab loop reads the mouse coordinates when the mouse moves on the front panel.
If these coordinates fall within the indicator’s bounds, they are translated into azimuth and
elevation commands and sent to the Real-Time (RT) Target using NPSVs.

Figure 81: The ’Manual’ tab loop.

On first-run, a property node references ’This VI’ to pick out the Tab indicator from the front
panel elements. It is indexed from the reference array and passed into the ’Bounding Box’ VI
through the process loop along with the mouse coordinates from the event structure.

Figure 82: The ’Bounding Box’ VI.

Within this VI, the mouse coordinates are unbundled into vertical and horizontal and the
object’s bounds are established by summing ’Top’ with ’Area Height’ and ’Left’ with ’Area
Width’. The bounds are used as limits for two ’In Range and Coerce’ functions which take in
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the mouse’s coordinates to show the user if their mouse is within the perscribed bounds.

The VI’s final operation is to subtract the ’Top’ and ’Left’ coordinates from the mouse’s vertical
and horizontal coordinates for normalization.

Within the process loop, the ’Bounding Box’ VI’s output coordinates are normalized by dividing
them by the height and width of the tab control, and multiplying them by the maximum value
they are to attain. Additionally, for the ’Vertical’ coordinate, the value is negated and added
to 90 to initialize it from the bottom instead of the top.

Using a case selector, the loop identifies whether the mouse coordinate beyond the lower or
upper bound of the Tab Control in the x or y direction. In the former case, the value zero is
passed to the elevation or azimuth indicators. In the latter case, 90 is passed to elevation if
the bound is exceeded vertically, and 360 is passed to azimuth if it is exceeded horizontally.
Otherwise, the bounded value is passed.
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